圆月山庄资源网 Design By www.vgjia.com

概要

这是这学期数字图像处理课的第一份作业好久没懂python手都快生了,调了好久才搞出来。

HSI颜色模型是一个满足计算机数字化颜色管理需要的高度抽象模拟的数学模型。HIS模型是从人的视觉系统出发,直接使用颜色三要素–色调(Hue)、饱和度(Saturation)和亮度(Intensity,有时也翻译作密度或灰度)来描述颜色。

RGB向HSI模型的转换是由一个基于笛卡尔直角坐标系的单位立方体向基于圆柱极坐标的双锥体的转换。基本要求是将RGB中的亮度因素分离,通常将色调和饱和度统称为色度,用来表示颜色的类别与深浅程度。在图中圆锥中间的横截面圆就是色度圆,而圆锥向上或向下延伸的便是亮度分量的表示。 (这里直接借鉴这篇文章:OpenCV+Python--RGB转HSI的实现)

Python实现RGB与HSI颜色空间的互换方式

从RGB空间到HSI空间的转换有多种方法,这里仅说明最为经典的几何推导法。RGB转化成HSI的公式为:

Python实现RGB与HSI颜色空间的互换方式

HSI转化成RGB的公式为:

Python实现RGB与HSI颜色空间的互换方式

Python代码:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time  : 2017/10/14 13:21
# @Author : DaiPuWei
# @Site  : 理学院机房
# @File  : __init__.py.py
# @Software: PyCharm Community Edition

import cv2
import numpy as np

def RGB2HSI(rgb_img):
  """
  这是将RGB彩色图像转化为HSI图像的函数
  :param rgm_img: RGB彩色图像
  :return: HSI图像
  """
  #保存原始图像的行列数
  row = np.shape(rgb_img)[0]
  col = np.shape(rgb_img)[1]
  #对原始图像进行复制
  hsi_img = rgb_img.copy()
  #对图像进行通道拆分
  B,G,R = cv2.split(rgb_img)
  #把通道归一化到[0,1]
  [B,G,R] = [ i/ 255.0 for i in ([B,G,R])]
  H = np.zeros((row, col))  #定义H通道
  I = (R + G + B) / 3.0    #计算I通道
  S = np.zeros((row,col))   #定义S通道
  for i in range(row):
    den = np.sqrt((R[i]-G[i])**2+(R[i]-B[i])*(G[i]-B[i]))
    thetha = np.arccos(0.5*(R[i]-B[i]+R[i]-G[i])/den)  #计算夹角
    h = np.zeros(col)        #定义临时数组
    #den>0且G>=B的元素h赋值为thetha
    h[B[i]<=G[i]] = thetha[B[i]<=G[i]]
    #den>0且G<=B的元素h赋值为thetha
    h[G[i]<B[i]] = 2*np.pi-thetha[G[i]<B[i]]
    #den<0的元素h赋值为0
    h[den == 0] = 0
    H[i] = h/(2*np.pi)   #弧度化后赋值给H通道
  #计算S通道
  for i in range(row):
    min = []
    #找出每组RGB值的最小值
    for j in range(col):
      arr = [B[i][j],G[i][j],R[i][j]]
      min.append(np.min(arr))
    min = np.array(min)
    #计算S通道
    S[i] = 1 - min*3/(R[i]+B[i]+G[i])
    #I为0的值直接赋值0
    S[i][R[i]+B[i]+G[i] == 0] = 0
  #扩充到255以方便显示,一般H分量在[0,2pi]之间,S和I在[0,1]之间
  hsi_img[:,:,0] = H*255
  hsi_img[:,:,1] = S*255
  hsi_img[:,:,2] = I*255
  return hsi_img

def HSI2RGB(hsi_img):
  """
  这是将HSI图像转化为RGB图像的函数
  :param hsi_img: HSI彩色图像
  :return: RGB图像
  """
  # 保存原始图像的行列数
  row = np.shape(hsi_img)[0]
  col = np.shape(hsi_img)[1]
  #对原始图像进行复制
  rgb_img = hsi_img.copy()
  #对图像进行通道拆分
  H,S,I = cv2.split(hsi_img)
  #把通道归一化到[0,1]
  [H,S,I] = [ i/ 255.0 for i in ([H,S,I])]
  R,G,B = H,S,I
  for i in range(row):
    h = H[i]*2*np.pi
    #H大于等于0小于120度时
    a1 = h >=0
    a2 = h < 2*np.pi/3
    a = a1 & a2     #第一种情况的花式索引
    tmp = np.cos(np.pi / 3 - h)
    b = I[i] * (1 - S[i])
    r = I[i]*(1+S[i]*np.cos(h)/tmp)
    g = 3*I[i]-r-b
    B[i][a] = b[a]
    R[i][a] = r[a]
    G[i][a] = g[a]
    #H大于等于120度小于240度
    a1 = h >= 2*np.pi/3
    a2 = h < 4*np.pi/3
    a = a1 & a2     #第二种情况的花式索引
    tmp = np.cos(np.pi - h)
    r = I[i] * (1 - S[i])
    g = I[i]*(1+S[i]*np.cos(h-2*np.pi/3)/tmp)
    b = 3 * I[i] - r - g
    R[i][a] = r[a]
    G[i][a] = g[a]
    B[i][a] = b[a]
    #H大于等于240度小于360度
    a1 = h >= 4 * np.pi / 3
    a2 = h < 2 * np.pi
    a = a1 & a2       #第三种情况的花式索引
    tmp = np.cos(5 * np.pi / 3 - h)
    g = I[i] * (1-S[i])
    b = I[i]*(1+S[i]*np.cos(h-4*np.pi/3)/tmp)
    r = 3 * I[i] - g - b
    B[i][a] = b[a]
    G[i][a] = g[a]
    R[i][a] = r[a]
  rgb_img[:,:,0] = B*255
  rgb_img[:,:,1] = G*255
  rgb_img[:,:,2] = R*255
  return rgb_img

def run_main():
  """
  这是主函数
  """
  #利用opencv读入图片
  rgb_img = cv2.imread('1.jpeg',cv2.IMREAD_COLOR)
  #进行颜色空间转换
  hsi_img = RGB2HSI(rgb_img)
  rgb_img2 = HSI2RGB(hsi_img)
  #opencv库的颜色空间转换结果
  hsi_img2 = cv2.cvtColor(rgb_img,cv2.COLOR_BGR2HSV)
  rgb_img3 = cv2.cvtColor(hsi_img2,cv2.COLOR_HSV2BGR)
  cv2.imshow("Origin",rgb_img)
  cv2.imshow("HSI", hsi_img)
  cv2.imshow("RGB",rgb_img2)
  cv2.imshow("OpenCV_HSI",hsi_img2)
  cv2.imshow("OpenCV_RGB",rgb_img3)
  cv2.imwrite("HSI.jpeg",hsi_img)
  cv2.imwrite("RGB.jpeg", rgb_img2)
  cv2.imwrite("OpenCV_HSI.jpeg", hsi_img2)
  cv2.imwrite("OpenCV_RGB.jpeg", rgb_img3)
  cv2.waitKey()
  cv2.destroyAllWindows()

if __name__ == '__main__':
  run_main()

原始图像为:

Python实现RGB与HSI颜色空间的互换方式

自己写的RGB2HSI函数生成的HSI图片:

Python实现RGB与HSI颜色空间的互换方式

opencv库函数生成的HSI图片:

Python实现RGB与HSI颜色空间的互换方式

用自己写的函数生成导入HSI图片执行HSI2RGB函数生成的RGB图片:

Python实现RGB与HSI颜色空间的互换方式

opencv库函数生成的HSI图片在此执行库函数生成RGB图片:

Python实现RGB与HSI颜色空间的互换方式

以上这篇Python实现RGB与HSI颜色空间的互换方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Python,RGB,HSI

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?