平行坐标图简介
当数据的维度超过三维时,此时数据的可视化就变得不再那么简单。为解决高维数据的可视化问题,我们可以使用平行坐标图。以下关于平行坐标图的解释引自百度百科:为了克服传统的笛卡尔直角坐标系容易耗尽空间、 难以表达三维以上数据的问题, 平行坐标图将高维数据的各个变量用一系列相互平行的坐标轴表示, 变量值对应轴上位置。为了反映变化趋势和各个变量间相互关系,往往将描述不同变量的各点连接成折线。所以平行坐标图的实质是将m维欧式空间的一个点Xi(xi1,xi2,...,xim) 映射到二维平面上的一条曲线。在N条平行的线的背景下,(一般这N条线都竖直且等距),一个在高维空间的点可以被表示为一条拐点在N条平行坐标轴的折线,在第K个坐标轴上的位置就表示这个点在第K个维的值。
绘制平行坐标图
本文主要介绍两种利用Python绘制平行坐标图的方法,分别是利用pandas包绘制和利用plotly包绘制(默认已安装pandas包和plotly包)。
利用pandas实现平行坐标图的绘制
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from pandas.plotting import parallel_coordinates data = sns.load_dataset('iris') fig,axes = plt.subplots() parallel_coordinates(data,'species',ax=axes) fig.savefig('parallel.png')
绘制的平行坐标图如下所示:
从上图可以看到x轴上变量共用一个y坐标轴,此时因sepal_length、sepal_width、petal_length以及petal_width这四个变量的值得范围相近,利用这种方式作出的共用y轴的平行坐标图有着很好的可视化效果;但假如sepal_length、sepal_width、petal_length以及petal_width这些变量的值的范围相差较大时,这种共用y轴的平行坐标图就不再适用,此时我们需要的是y轴独立的平行坐标图。下面介绍的另一种方法实现的就是y轴独立的平行坐标图。
利用plotly实现平行坐标图的绘制
plotly绘图有两种模式,一种是online模式,另一种是offline模式。本文使用的是offline模式,且是在jupyter notebook中进行绘图。
首先熟悉一下plotly的绘图方式:
import plotly as py import plotly.graph_objs as go py.offline.init_notebook_mode(connected=True) # 初始化设置 py.offline.iplot({ "data": [go.Parcoords( line = dict(color = 'blue'), dimensions = list([ dict(range = [1,5], constraintrange = [1,2], label = 'A', values = [1,4]), dict(range = [1.5,5], tickvals = [1.5,3,4.5], label = 'B', values = [3,1.5]), dict(range = [1,5], tickvals = [1,2,4,5], label = 'C', values = [2,4], ticktext = ['text 1', 'text 2', 'text 3', 'text 4']), dict(range = [1,5], label = 'D', values = [4,2]) ]) )], "layout": go.Layout(title="My first parallel coordinates") })
绘制图形如下所示:
绘制鸢尾花数据的平行坐标图:
df = sns.load_dataset('iris') df['species_id'] = df['species'].map({'setosa':1,'versicolor':2,'virginica':3}) #用于颜色映射 py.offline.iplot({ "data": [go.Parcoords( line = dict(color = df['species_id'], colorscale = [[0,'#D7C16B'],[0.5,'#23D8C3'],[1,'#F3F10F']]), dimensions = list([ dict(range = [2,8], constraintrange = [4,8], label = 'Sepal Length', values = df['sepal_length']), dict(range = [1,6], label = 'Sepal Width', values = df['sepal_width']), dict(range = [0,8], label = 'Petal Length', values = df['petal_length']), dict(range = [0,4], label = 'Petal Width', values = df['petal_width']) ]) )], "layout": go.Layout(title='Iris parallel coordinates plot') })
绘制的图形如下所示:
注:关于plotly.offline.iplot、go.Parcoords以及go.Layout的用法可以利用help关键字查看相关帮助文档,与pyecharts不同,plotly提供的帮助文档非常详细。
以上这篇Python实现平行坐标图的绘制(plotly)方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]