圆月山庄资源网 Design By www.vgjia.com

最近因为数学建模3天速成Python,然后做了一道网络的题,要画网络图。在网上找了一些,发现都是一些很基础的丑陋红点图,并且关于网络的一些算法也没有讲,于是自己进http://networkx.github.io/学习了一下。以下仅博主自己的总结,勿认真,有错误尽情指出,大家一起交流。

需要用到的module malplotlib.pyplot 和networkx

正文:

一、malplotlib和networkx的安装(作者使用的是python2.7 pycharm)

在Python的文件夹目录下Scripts目录中,如果有pip.exe 文件,那么可以用cmd 进入这个目录,然后输入 `pip insall --pre matplotlib`直接下载。如果有easy_install 也可以输入`easy_install。如果都不行就去官网 https://pypi.python.org/pypi/matplotlib/1.5.3`找对应版本下载。

至于networkx,pycharm的porject interpreter里添加就好。

二、创建图

networkx有四种图 Graph 、DiGraph、MultiGraph、MultiDiGraph,分别为无多重边无向图、无多重边有向图、有多重边无向图、有多重边有向图。

  import network as nx 
  G = nx.Graph()#创建空的网络图
  G = nx.DiGraph()
  G = nx.MultiGraph()
  G = nx.MultiDiGraph()

然后是加点和边了,有多种方法

G.add_node('a')#添加点a
G.add_node(1,1)#用坐标来添加点
G.add_edge('x','y')#添加边,起点为x,终点为y
G.add_weight_edges_from([('x','y',1.0)])#第三个输入量为权值
#也可以
list = [[('a','b',5.0),('b','c',3.0),('a','c',1.0)]
G.add_weight_edges_from([(list)])

然后是图形的显示

#需要导入matplotlib
import matplotlib.pyplot as plt


nx.draw(G)
plt.show()

为了让图形更精美我们详解nx.draw()

nx.draw(G,pos = nx.random_layout(G),node_color = 'b',edge_color = 'r',with_labels = True,font_size =18,node_size =20)

pos 指的是布局 主要有spring_layout , random_layout,circle_layout,shell_layout。node_color指节点颜色,有rbykw ,同理edge_color.

with_labels指节点是否显示名字,size表示大小,font_color表示字的颜色。

看到这里,各位应该就能画出大量网站上的基本networkx简单教程了,大概是这个样子

使用Python的networkx绘制精美网络图教程

三、绘制精美的图

如果你想要的图是这样的

使用Python的networkx绘制精美网络图教程

或是这样的

使用Python的networkx绘制精美网络图教程

还是这样的

使用Python的networkx绘制精美网络图教程

使用Python的networkx绘制精美网络图教程

可以继续看下去

首先要掌握两个方法

def draw_networkx_edges(G, pos,
            edgelist=None,
            width=1.0,
            edge_color='k',
            style='solid',
            alpha=1.0,
            edge_cmap=None,
            edge_vmin=None,
            edge_vmax=None,
            ax=None,
            arrows=True,
            label=None,
            **kwds):
G:图表
  一个networkx图
pos:dictionary
  将节点作为键和位置作为值的字典。
  位置应该是长度为2的序列。

edgelist:边缘元组的集合
  只绘制指定的边(默认= G.edges())

width:float或float数组
  边线宽度(默认值= 1.0)

edge_color:颜色字符串或浮点数组
  边缘颜色。可以是单颜色格式字符串(default ='r'),
  或者具有与edgelist相同长度的颜色序列。
  如果指定了数值,它们将被映射到
  颜色使用edge_cmap和edge_vmin,edge_vmax参数。

style:string
  边线样式(默认='solid')(实线|虚线|点线,dashdot)

alpha:float
  边缘透明度(默认值= 1.0)

edge_ cmap:Matplotlib色彩映射
  用于映射边缘强度的色彩映射(默认值=无)

edge_vmin,edge_vmax:float
  边缘色图缩放的最小值和最大值(默认值=无)

ax:Matplotlib Axes对象,可选
  在指定的Matplotlib轴中绘制图形。

arrows:bool,optional(default = True)
  对于有向图,如果为真,则绘制箭头。

label:图例的标签
def draw_networkx_nodes(G, pos,
            nodelist=None,
            node_size=300,
            node_color='r',
            node_shape='o',
            alpha=1.0,
            cmap=None,
            vmin=None,
            vmax=None,
            ax=None,
            linewidths=None,
            label=None,
            **kwds):

G:图表

一个networkx图

pos:dictionary
  将节点作为键和位置作为值的字典。
  位置应该是长度为2的序列。

ax:Matplotlib Axes对象,可选
  在指定的Matplotlib轴中绘制图形。

nodelist:list,可选
  只绘制指定的节点(默认G.nodes())

node_size:标量或数组
  节点大小(默认值= 300)。如果指定了数组,它必须是
  与点头长度相同。

node_color:颜色字符串或浮点数组
  节点颜色。可以是单颜色格式字符串(default ='r'),
  或者具有与点头相同长度的颜色序列。
  如果指定了数值,它们将被映射到
  颜色使用cmap和vmin,vmax参数。看到
  matplotlib.scatter更多详细信息。

node_shape:string
  节点的形状。规格为matplotlib.scatter
  标记,'so ^> v <dph8'(默认='o')之一。

alpha:float
  节点透明度(默认值= 1.0)

cmap:Matplotlib色图
  色彩映射节点的强度(默认=无)

vmin,vmax:float
  节点色彩映射缩放的最小值和最大值(默认值=无)

线宽:[无|标量|序列]
  符号边框的线宽(默认值= 1.0)

label:[无|串]
  图例的标签

然后基本上所有networkx的超酷精美图的源码你都能快速弄懂了。

http://networkx.github.io/ 网络图案例源码

使用Python的networkx绘制精美网络图教程

以上这篇使用Python的networkx绘制精美网络图教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Python,networkx,网络图

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?