圆月山庄资源网 Design By www.vgjia.com

索引与切片在Tensorflow中使用的频率极其高,可以用来提取部分数据。

1.索引

在 TensorFlow 中,支持基本的["htmlcode">

# 创建张量
x = tf.random.normal([4, 32, 32, 3])
# 提取出第一张图片
x[0]

<tf.Tensor: id=253, shape=(32, 32, 3), dtype=float32, numpy=
array([[[ 3.16146165e-01, 1.88969020e-02, 1.38413876e-01],
    [ 4.89341050e-01, 2.75277281e+00, 7.39786148e-01],
    [-1.25965345e+00, -2.69633114e-01, -1.16465724e+00],
    ...,


# 提取出第一张图片的第二行
x[0][1]

<tf.Tensor: id=261, shape=(32, 3), dtype=float32, numpy=
array([[ 7.4337220e-01, -1.0524833e+00, -2.6401659e-03],
    [ 5.3725803e-01, -9.5556659e-01, 4.9091709e-01],
    [-4.6934509e-01, 7.9289172e-03, -2.9179385e+00],
    [ 2.9324377e-01, 2.1451252e+00, -3.8849866e-01],
    [ 8.2027388e-01, -4.9701610e-01, -7.3374517e-02],
    ......

# 提取出第一张图片的第二行第三列的像素
x[0][1][2]

<tf.Tensor: id=273, shape=(3,), dtype=float32, numpy=array([-0.4693451 , 0.00792892, -2.9179385 ], dtype=float32)>

# 提取出第一张图片第二行第三列第二个用到(B通道)的颜色强度
x[0][1][2][2]

<tf.Tensor: id=289, shape=(), dtype=float32, numpy=-2.9179385>

当张量的维度数较高时,使用["htmlcode">

x[1, 9, 2] == x[1][9][2]

<tf.Tensor: id=306, shape=(3,), dtype=bool, numpy=array([ True, True, True])>

2.切片

通过"htmlcode">

# 创建张量
x = tf.random.normal([4, 32, 32, 3])
# 读取第二张和第三张图片
x[1:3]

<tf.Tensor: id=344, shape=(2, 32, 32, 3), dtype=float32, numpy=
array([[[[-3.4415385e-01, 5.8418065e-01, 1.8238322e-01],
     [ 5.3377771e-01, 5.8201426e-01, 1.2839563e+00],
     [-1.4592046e+00, -2.3443605e-01, -2.6524603e-01],
     ...,
     [-5.0662726e-01, 6.9743747e-01, -5.8803167e-02],
     [ 1.4200432e+00, -5.0182146e-01, 5.1661726e-02],
     [ 3.5610806e-02, -2.4781477e-01, 1.8222639e-01]],

    [[ 1.3892423e+00, 1.1985755e+00, -6.4732605e-01],
     [ 8.5562867e-01, 1.2758574e+00, 1.7331127e+00],
     [ 9.7743452e-02, -5.3990984e-01, 8.3400911e-01],
     ...,

 start: end: step切片方式有很多简写方式,其中 start、end、step 3 个参数可以根据需要选择性地省略,全部省略时即::,表示从最开始读取到最末尾,步长为 1,即不跳过任何元素。如 x[0,::]表示读取第 1 张图片的所有行,其中::表示在行维度上读取所有行,它等于x[0]的写法。

即x[0, ::]等价于x[0 ]。

为了更加简洁,::可以简写成为单个冒号。

x[:, 0:28:2, 0:28:2, :]

<tf.Tensor: id=344, shape=(2, 32, 32, 3), dtype=float32, numpy=
array([[[[-3.4415385e-01, 5.8418065e-01, 1.8238322e-01],
     [ 5.3377771e-01, 5.8201426e-01, 1.2839563e+00],
     [-1.4592046e+00, -2.3443605e-01, -2.6524603e-01],
     ...,

上述表示取所有图片,隔行采样,隔列采样,采集所有通道信息。相当于在图片的高宽各放缩至原来的一半。

下面是一些常见的切片方式小结:

TensorFlow索引与切片的实现方法

特别地,step可以为负数。例如:step = "htmlcode">

x = tf.range(9)

# 逆序输出
x[8:0:-1]
<tf.Tensor: id=31, shape=(8,), dtype=int32, numpy=array([8, 7, 6, 5, 4, 3, 2, 1])>

# 逆序取全部元素
x[::-1]
<tf.Tensor: id=35, shape=(9,), dtype=int32, numpy=array([8, 7, 6, 5, 4, 3, 2, 1, 0])>

# 逆序间隔采样
x[::-2]
<tf.Tensor: id=39, shape=(5,), dtype=int32, numpy=array([8, 6, 4, 2, 0])>

当张量的维度数量较多时,不需要采样的维度一般用单冒号:表示采样所有元素。

x = tf.random.normal([4, 32, 32, 3])
# 提取所有图片的G通道
x[:,:,:,1]

<tf.Tensor: id=59, shape=(4, 32, 32), dtype=float32, numpy=
array([[[ 0.5700944 , 0.58056635, 2.2198782 , ..., -0.8475847 ,
     0.49761978, 0.28784937],
    [-0.22224228, 0.77950406, -0.01802959, ..., 0.55532527,
     0.6826188 , 0.50668514],
    [-2.4160695 , -0.96219736, 0.62681717, ..., 1.0348777 ,

为了避免出现像"text-align: center">TensorFlow索引与切片的实现方法

# 创建四张大小为32*32的彩色图片
x = tf.random.normal([4, 32, 32, 3])
# 读取第一张和第二张图片的G/B通道数据
x[0:2,...,1:]
# 读取最后两张图片
x[2,...]
# 读取所有图片的R/G通道
x[...,:2]

掌握了张量的索引与切片之后,会让我们的书写更加快捷。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
TensorFlow,索引,TensorFlow,切片

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?