圆月山庄资源网 Design By www.vgjia.com

【更新】主要提供两种方案:

方案一:(参考网上代码,感觉实用性不是很强)使用PIL截取图像,然后将RGB转为HSV进行判断,统计判断颜色,最后输出RGB值

方案二:使用opencv库函数进行处理。(效果不错)

1、将图片颜色转为hsv,
2、使用cv2.inRange()函数进行背景颜色过滤
3、将过滤后的颜色进行二值化处理
4、进行形态学腐蚀膨胀,cv2.dilate()
5、统计白色区域面积

详解:方案一:

转载出处:www.jb51.net/article/62526.htm

项目实际需要,对识别出来的车车需要标记颜色,因此采用方案如下:

1、通过import PIL.ImageGrab as ImageGrab 将识别出来的汽车矩形框裁剪出来

img_color=image.crop((left,right,top,bottom))

2、将裁剪出来的image进行颜色图像识别

RGB和hsv中间的转换关系,网上很多,我也没有具体去研究如何转换的,能用就行

附上测试,封装成函数方法:

import colorsys
import PIL.Image as Image
 
def get_dominant_color(image):
  max_score = 0.0001
  dominant_color = None
  for count,(r,g,b) in image.getcolors(image.size[0]*image.size[1]):
    # 转为HSV标准
    saturation = colorsys.rgb_to_hsv(r/255.0, g/255.0, b/255.0)[1]
    y = min(abs(r*2104+g*4130+b*802+4096+131072)13,235)
    y = (y-16.0)/(235-16)
 
    #忽略高亮色
    if y > 0.9:
      continue
    score = (saturation+0.1)*count
    if score > max_score:
      max_score = score
      dominant_color = (r,g,b)
  return dominant_color
 
 
if __name__ == '__main__':
  image = Image.open('test.jpg')
  image = image.convert('RGB')
  print(get_dominant_color(image))

测试图

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

结果

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

在这个网上查询RGB数值对应的颜色

http://tools.jb51.net/static/colorpicker/index.html

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

方案二:opencv计算机视觉库函数处理

1、定义HSV颜色字典,参考网上HSV颜色分类

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

代码如下:

import numpy as np
import collections
 
#定义字典存放颜色分量上下限
#例如:{颜色: [min分量, max分量]}
#{'red': [array([160, 43, 46]), array([179, 255, 255])]}
 
def getColorList():
  dict = collections.defaultdict(list)
 
  # 黑色
  lower_black = np.array([0, 0, 0])
  upper_black = np.array([180, 255, 46])
  color_list = []
  color_list.append(lower_black)
  color_list.append(upper_black)
  dict['black'] = color_list
 
  # #灰色
  # lower_gray = np.array([0, 0, 46])
  # upper_gray = np.array([180, 43, 220])
  # color_list = []
  # color_list.append(lower_gray)
  # color_list.append(upper_gray)
  # dict['gray']=color_list
 
  # 白色
  lower_white = np.array([0, 0, 221])
  upper_white = np.array([180, 30, 255])
  color_list = []
  color_list.append(lower_white)
  color_list.append(upper_white)
  dict['white'] = color_list
 
  #红色
  lower_red = np.array([156, 43, 46])
  upper_red = np.array([180, 255, 255])
  color_list = []
  color_list.append(lower_red)
  color_list.append(upper_red)
  dict['red']=color_list
 
  # 红色2
  lower_red = np.array([0, 43, 46])
  upper_red = np.array([10, 255, 255])
  color_list = []
  color_list.append(lower_red)
  color_list.append(upper_red)
  dict['red2'] = color_list
 
  #橙色
  lower_orange = np.array([11, 43, 46])
  upper_orange = np.array([25, 255, 255])
  color_list = []
  color_list.append(lower_orange)
  color_list.append(upper_orange)
  dict['orange'] = color_list
 
  #黄色
  lower_yellow = np.array([26, 43, 46])
  upper_yellow = np.array([34, 255, 255])
  color_list = []
  color_list.append(lower_yellow)
  color_list.append(upper_yellow)
  dict['yellow'] = color_list
 
  #绿色
  lower_green = np.array([35, 43, 46])
  upper_green = np.array([77, 255, 255])
  color_list = []
  color_list.append(lower_green)
  color_list.append(upper_green)
  dict['green'] = color_list
 
  #青色
  lower_cyan = np.array([78, 43, 46])
  upper_cyan = np.array([99, 255, 255])
  color_list = []
  color_list.append(lower_cyan)
  color_list.append(upper_cyan)
  dict['cyan'] = color_list
 
  #蓝色
  lower_blue = np.array([100, 43, 46])
  upper_blue = np.array([124, 255, 255])
  color_list = []
  color_list.append(lower_blue)
  color_list.append(upper_blue)
  dict['blue'] = color_list
 
  # 紫色
  lower_purple = np.array([125, 43, 46])
  upper_purple = np.array([155, 255, 255])
  color_list = []
  color_list.append(lower_purple)
  color_list.append(upper_purple)
  dict['purple'] = color_list
 
  return dict
 
 
if __name__ == '__main__':
  color_dict = getColorList()
  print(color_dict)
 
  num = len(color_dict)
  print('num=',num)
 
  for d in color_dict:
    print('key=',d)
    print('value=',color_dict[d][1])

2、颜色识别

import cv2
import numpy as np
import colorList
 
filename='car04.jpg'
 
#处理图片
def get_color(frame):
  print('go in get_color')
  hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
  maxsum = -100
  color = None
  color_dict = colorList.getColorList()
  for d in color_dict:
    mask = cv2.inRange(hsv,color_dict[d][0],color_dict[d][1])
    cv2.imwrite(d+'.jpg',mask)
    binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
    binary = cv2.dilate(binary,None,iterations=2)
    img, cnts, hiera = cv2.findContours(binary.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
    sum = 0
    for c in cnts:
      sum+=cv2.contourArea(c)
    if sum > maxsum :
      maxsum = sum
      color = d
 
  return color
 
 
if __name__ == '__main__':
  frame = cv2.imread(filename)
  print(get_color(frame))

3、结果

原始图像(网上找的测试图):

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

1)、使用cv2.inRange()函数过滤背景后图片如下:

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

2)、可见使用白色分量过滤背景后,出现车辆的轮廓,因此,能够计算白色区域的面积,最大的则为该物体颜色

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
Python3识别图片颜色,python图像识别色差,python图像识别

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?