圆月山庄资源网 Design By www.vgjia.com

1.相关函数

  • df.dropna()
  • df.fillna()
  • df.isnull()
  • df.isna()

2.相关概念

空值:在pandas中的空值是""

缺失值:在dataframe中为nan或者naT(缺失时间),在series中为none或者nan即可

3.函数具体解释

DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

函数作用:删除含有空值的行或列

axis:维度,axis=0表示index行,axis=1表示columns列,默认为0

how:"all"表示这一行或列中的元素全部缺失(为nan)才删除这一行或列,"any"表示这一行或列中只要有元素缺失,就删除这一行或列

thresh:一行或一列中至少出现了thresh个才删除。

subset:在某些列的子集中选择出现了缺失值的列删除,不在子集中的含有缺失值得列或行不会删除(有axis决定是行还是列)

inplace:刷选过缺失值得新数据是存为副本还是直接在原数据上进行修改。

例子:

df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
        "toy": [np.nan, 'Batmobile', 'Bullwhip'],
         "born": [pd.NaT, pd.Timestamp("1940-04-25"),pd.NaT]})
 
print df

pandas 缺失值与空值处理的实现方法

默认参数:删除行,只要有空值就会删除,不替换。

print df.dropna()
print df

pandas 缺失值与空值处理的实现方法

print "delete colums"
print df.dropna(axis=1) #delete col

pandas 缺失值与空值处理的实现方法

print "所有值全为缺失值才删除"
print df.dropna(how='all')

pandas 缺失值与空值处理的实现方法

print "至少出现过两个缺失值才删除"
print df.dropna(thresh=2)

pandas 缺失值与空值处理的实现方法

print "删除这个subset中的含有缺失值的行或列"
print df.dropna(subset=['name', 'born'])

pandas 缺失值与空值处理的实现方法

DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)

函数作用:填充缺失值

value:需要用什么值去填充缺失值

axis:确定填充维度,从行开始或是从列开始

method:ffill:用缺失值前面的一个值代替缺失值,如果axis =1,那么就是横向的前面的值替换后面的缺失值,如果axis=0,那么则是上面的值替换下面的缺失值。backfill/bfill,缺失值后面的一个值代替前面的缺失值。注意这个参数不能与value同时出现

limit:确定填充的个数,如果limit=2,则只填充两个缺失值。

示例:

df = pd.DataFrame([[np.nan, 2, np.nan, 0],
         [3, 4, np.nan, 1],
         [np.nan, np.nan, np.nan, 5],
        [np.nan, 3, np.nan, 4]],
         columns=list('ABCD'))
 
print df
 
print "横向用缺失值前面的值替换缺失值"
print df.fillna(axis=1,method='ffill')
 
print "纵向用缺失值上面的值替换缺失值"
print df.fillna(axis=0,method='ffill')

pandas 缺失值与空值处理的实现方法

print df.fillna(0)

pandas 缺失值与空值处理的实现方法

不同的列用不同的值填充:

pandas 缺失值与空值处理的实现方法

对每列出现的替换值有次数限制,此处限制为一次

pandas 缺失值与空值处理的实现方法

DataFrame.isna()

判断是不是缺失值:

pandas 缺失值与空值处理的实现方法

isnull同上。

替换空值:

df = pd.DataFrame([[np.nan, 2, np.nan, 0],
         [3, 4, "", 1],
         [np.nan, np.nan, np.nan, 5],
        [np.nan, 3, "", 4]],
         columns=list('ABCD'))
 
print df

pandas 缺失值与空值处理的实现方法

如上,缺失值是NAN,空值是没有显示。

替换空值代码:需要把含有空值的那一列提出来单独处理,然后在放进去就好。

clean_z = df['C'].fillna(0)
clean_z[clean_z==''] = 'hello'
df['C'] = clean_z
print df

pandas 缺失值与空值处理的实现方法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
pandas,缺失值,pandas,空值处理

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?