圆月山庄资源网 Design By www.vgjia.com

图像处理工具——灰度直方图

灰度直方图时图像灰度级的函数,用来描述每个灰度级在图像矩阵中的像素个数或者占有率。
例子:矩阵

Python 图像对比度增强的几种方法(小结)

图片来自网络,侵删!

Python 图像对比度增强的几种方法(小结)

上面图片的灰度直方图

Python 图像对比度增强的几种方法(小结)

python实现

#!usr/bin/env python
#-*- coding:utf-8 _*-
"""
@author:Sui yue
@describe: 灰度直方图,描述每个灰度级在图像矩阵中的像素个数或者占有率
@time: 2019/09/15
"""

import sys
import cv2
import numpy as np
import matplotlib.pyplot as plt

#对于8位图,图像的灰度级范围式0~255之间的整数,通过定义函数来计算直方图
def calcGrayHist(image):
 #灰度图像矩阵的高、宽
 rows, cols = image.shape
 #存储灰度直方图
 grayHist=np.zeros([256],np.uint64)
 for r in range(rows):
  for c in range(cols):
   grayHist[image[r][c]] +=1
 return grayHist
#主函数
if __name__=="__main__":
 #第一个参数式图片地址,你只需放上你的图片就可
 image = cv2.imread('../images/test3.jpg', cv2.IMREAD_GRAYSCALE)
 cv2.imshow("image", image)
 print("Usge:python histogram.py imageFile")
 #计算灰度直方图
 grayHist=calcGrayHist(image)
 #画出灰度直方图
 x_range=range(256)
 plt.plot(x_range,grayHist,'r',linewidth=2,c='black')
 #设置坐标轴的范围
 y_maxValue=np.max(grayHist)
 plt.axis([0,255,0,y_maxValue])
 plt.ylabel('gray level')
 plt.ylabel("number or pixels")
 # 显示灰度直方图
 plt.show()
 cv2.waitKeyEx(0)

结果

Python 图像对比度增强的几种方法(小结)

线性变换

假设输入图像为I,宽W、高为H,输出图像为O,图像的线性变换可以利用以下公式:

Python 图像对比度增强的几种方法(小结)

a的改变影响图像的对比度,b的改变影响图像的亮度

线性变换python实现

#!usr/bin/env python3
#-*- coding:utf-8 -*-
#--------------------------
"""
@author:Sui yue
@describe: 对比增强,线性变换
@time: 2019/09/15 14:21:44
"""
import sys
import numpy as np
import cv2
import matplotlib.pyplot as plt
#主函数

def calcGrayHist(image):
 #灰度图像矩阵的高、宽
 rows, cols = image.shape
 #存储灰度直方图
 grayHist=np.zeros([256],np.uint64)
 for r in range(rows):
  for c in range(cols):
   grayHist[image[r][c]] +=1
   # 显示灰度直方图
 # 画出灰度直方图
 x_range = range(256)
 plt.plot(x_range, grayHist, 'r', linewidth=2, c='black')
 # 设置坐标轴的范围
 y_maxValue = np.max(grayHist)
 plt.axis([0, 255, 0, y_maxValue])
 plt.ylabel('gray level')
 plt.ylabel("number or pixels")
 # 显示灰度直方图
 plt.show()

if __name__=="__main__":
 # 读图像
 I = cv2.imread('../images/test3.jpg', cv2.IMREAD_GRAYSCALE)
 #线性变换
 a=3
 O=float(a)*I
 #进行数据截断,大于255 的值要截断为255
 O[0>255]=255
 #数据类型转换
 O=np.round(O)
 #uint8类型
 O=O.astype(np.uint8)
 #显示原图和线性变换后的效果
 cv2.imshow("I",I)
 cv2.imshow("O",O)
 calcGrayHist(I)
 calcGrayHist(O)
 cv2.waitKey(0)
 cv2.destroyAllWindows()

线性变换结果

Python 图像对比度增强的几种方法(小结)

灰度直方图

Python 图像对比度增强的几种方法(小结)

直方图正规化

假设输入图像为I,宽W、高为HIr,c)I(r,c)I(r,c)代表I的第r行第c列的灰度值,将I中出现的最小灰度级记为IminI_{min}Imin"normal">(r,c[Imin,Imax]I(r,c)\in [I_{min},I_{max}]I(r,c)∈[Imin"false">[Omin,Omax][O_{min},O_{max}][Omin"normal">(r,c)I(r,c)I(r,c)和Or,c)O(r,c)O(r,c)做以下映射关系:

Python 图像对比度增强的几种方法(小结)

其中0r<H,0c<W\quad0\le r \lt H,0\le c \lt W0≤r<H,0≤c<W,O(r,c)O(r,c)O(r,c)代表O的第r行和第c列的灰度值。这个过程就是常称的直方图正规化。因为0I(r,c)"false">(r,c)[Omin,Omax]O(r,c) \in [O_{min},O_{max}]O(r,c)∈[Omin"text-align: center">Python 图像对比度增强的几种方法(小结)

直方图正规化python实现

#!usr/bin/env python3
#-*- coding:utf-8 -*-
#--------------------------
"""
@author:Sui yue
@describe: 直方图正规化
@time: 2019/09/18 21:17:22
"""

import cv2
import numpy as np
import matplotlib.pyplot as plt
import sys

def calcGrayHist(image):
 #灰度图像矩阵的高、宽
 rows, cols = image.shape
 #存储灰度直方图
 grayHist=np.zeros([256],np.uint64)
 for r in range(rows):
  for c in range(cols):
   grayHist[image[r][c]] +=1
   # 显示灰度直方图
 # 画出灰度直方图
 x_range = range(256)
 plt.plot(x_range, grayHist, 'r', linewidth=2, c='black')
 # 设置坐标轴的范围
 y_maxValue = np.max(grayHist)
 plt.axis([0, 255, 0, y_maxValue])
 plt.ylabel('gray level')
 plt.ylabel("number or pixels")
 # 显示灰度直方图
 plt.show()
#主函数
if __name__ == '__main__':
 #读入图像
 I = cv2.imread('../images/test3.jpg', cv2.IMREAD_GRAYSCALE)
 #求I的最大值,最小值
 Imax=np.max(I)
 Imin=np.min(I)
 #要输出的最小灰度级和最大灰度级
 Omax,Omin=255,0
 #计算a和b的值 ,测试出*4 能看到人脸
 a=float(Omax-Omin)/(Imax-Imin)
 b=Omin-a*Imin
 #矩阵的线性变换
 O=a*I+b
 #数据类型转换
 O=O.astype(np.uint8)
 #显示原图和直方图正规化的效果
 cv2.imshow("I",I)
 cv2.imshow("O",O)
 calcGrayHist(O)
 cv2.waitKey(0)
 cv2.destroyAllWindows()

直方图正规化结果

Python 图像对比度增强的几种方法(小结)

Python 图像对比度增强的几种方法(小结)

伽马变换

假设输入图像为I,宽W、高为H,首先将其灰度值归一化到[0,1][0,1][0,1]范围,对于8位图来说,除以255即可。I(r,c)I(r,c)I(r,c)代表归一化后的第r行第c列的灰度值,为使输出图像O ,伽马变换就是令O(r,c)=I(r,c)γ,0r<H,0c<WO(r,c)=I(r,c)^\gamma,\quad0\le r \lt H,0\le c \lt WO(r,c)=I(r,c)γ,0≤r<H,0≤c<W,如下图所示:

Python 图像对比度增强的几种方法(小结)

γ=1\gamma=1γ=1时,图像不变。如果图像整体或者感兴趣区域较暗,则令0γ<10\le \gamma \lt 10≤γ<1可以增加图像对比度;相反图像整体或者感兴趣区域较亮,则令γ>1\gamma \gt 1γ>1可以降低图像对比度。

伽马变换python实现

#!usr/bin/env python3
#-*- coding:utf-8 -*-
#--------------------------
"""
@author:Sui yue
@describe: 对比增强 伽马变换
@time: 2019/09/18 22:22:51
"""
import cv2
import numpy as np
import sys
#主函数
if __name__ == '__main__':
  I = cv2.imread('../images/test3.jpg', cv2.IMREAD_GRAYSCALE)
  #图像归一化
  fI=I/255.0
  #伽马变换
  gamma=0.3
  O=np.power(fI,gamma)
  #显示原图和伽马变换
  cv2.imshow("I",I)
  cv2.imshow("O",O)
  cv2.waitKey()
  cv2.destroyAllWindows()

伽马变换结果

Python 图像对比度增强的几种方法(小结)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
Python,图像对比度增强,Python,图像对比度

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?