1. 基本环境
安装 anaconda 环境, 由于国内登陆不了他的官网 https://www.continuum.io/downloads, 不过可以使用国内的镜像站点: https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
添加绘图工具 Graphviz http://www.graphviz.org/Download_windows.php
安装后, 将bin 目录内容添加到环境变量path 即可
参考blog : https://www.jb51.net/article/169878.htm
官网技术文档 : http://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart
2. 遇到的一些问题
csv 文件读取 https://docs.python.org/3.5/library/csv.html"_blank" href="https://docs.python.org/2/library/csv.html" rel="external nofollow" >https://docs.python.org/2/library/csv.html"color: #ff0000">3. 实现
数据文件:
这是一个给定 4 个属性, age, income, student, credit_rating 以及 一个 标记属性 class_buys_computer 的数据集, 我们需要根据这个数据集进行分析并构建一颗决策树
代码实现:
核心就是调用 tree 的 DecisionTreeClassifier 方法对数据进行 训练得到一颗决策树
# -*- coding: utf-8 -*- """ Created on Sun Dec 25 11:25:40 2016 @author: Administrator """ from sklearn.feature_extraction import DictVectorizer import csv from sklearn import tree from sklearn import preprocessing from sklearn.externals.six import StringIO import pydotplus from IPython.display import Image # Read in the csv file and put features into list of dict and list of class label allElectornicsData = open('AllElectronics.csv', 'r') reader = csv.reader(allElectornicsData) # headers = reader.next() python2.7 supported 本质获取csv 文件的第一行数据 #headers = reader.__next__() python 3.5.2 headers = next(reader) print(headers) featureList = [] labelList = [] for row in reader: labelList.append(row[len(row) - 1]) rowDict = {} for i in range(1, len(row) - 1): rowDict[headers[i]] = row[i] featureList.append(rowDict) print(featureList) print(labelList) # Vetorize features vec = DictVectorizer() dummyX = vec.fit_transform(featureList).toarray() print("dummyX: " + str(dummyX)) print(vec.get_feature_names()) print("labelList: " + str(labelList)) # vectorize class labels lb = preprocessing.LabelBinarizer() dummyY = lb.fit_transform(labelList) print("dummyY: ", str(dummyY)) # Using decision tree for classification ===========【此处调用为算法核心】============ #clf = tree.DecisionTreeClassifier(criterion='entropy') clf = tree.DecisionTreeClassifier(criterion='gini') clf = clf.fit(dummyX, dummyY) print("clf: ", str(clf)) # Visualize model # dot -Tpdf iris.dot -o ouput.pdf with open("allElectronicInformationGainOri.dot", 'w') as f: f = tree.export_graphviz(clf, feature_names = vec.get_feature_names(), out_file = f) # predict oneRowX = dummyX[0, :] print("oneRowX: " + str(oneRowX)) newRowX = oneRowX newRowX[0] = 1 newRowX[2] = 0 print("newRowX: " + str(newRowX)) predictedY = clf.predict(newRowX) print("predictedY: " + str(predictedY))
输出结果:
ID3 算法
CART 算法
4. 决策树的优缺点
决策树的优势
- 简单易用,而且输出的结果易于解释,树能够被图形化,加深了直观的理解。
- 几乎不需要对数据进行预处理。
- 算法的开销不大,而且决策树一旦建立,对于未知样本的分类十分快,最坏情况下的时间复杂度是O(w),w是树的最大深度。
- 能够用于多类的分类。
- 能够容忍噪点。
决策树的劣势
- 容易过拟合。
- 容易被类别中占多数的类影响而产生bias,所以推荐在送入算法之间先平衡下数据中各个类别所占的比例。
- 决策树采用的是自顶向下的递归划分法,因此自定而下到了末端枝叶包含的数据量会很少,我们会依据很少的数据量取做决策,这样的决策是不具有统计意义的,这就是数据碎片的问题。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]