圆月山庄资源网 Design By www.vgjia.com

Numpy的简单用法,下面就一起来了解一下

import numpy as np

一、创建ndarray对象

列表转换成ndarray:

> a = [1,2,3,4,5]
> np.array(a)
array([1, 2, 3, 4, 5])

取随机浮点数

> np.random.rand(3, 4)
array([[ 0.16215336, 0.49847764, 0.36217369, 0.6678112 ],
    [ 0.66729648, 0.86538771, 0.32621889, 0.07709784],
    [ 0.05460976, 0.3446629 , 0.35589223, 0.3716221 ]])

取随机整数

> np.random.randint(1, 5, size=(3,4))
array([[2, 3, 1, 2],
    [3, 4, 4, 4],
    [4, 4, 4, 3]])

取零

> np.zeros((3,4))
array([[ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.]])

取一

> np.ones((3,4))
array([[ 1., 1., 1., 1.],
    [ 1., 1., 1., 1.],
    [ 1., 1., 1., 1.]])

取空(最好别用,了解一下,版本不同返回值不一样)

> np.empty((3,4))
array([[ 1., 1., 1., 1.],
    [ 1., 1., 1., 1.],
    [ 1., 1., 1., 1.]])

取整数零或一

> np.ones((3,4),int)
array([[1, 1, 1, 1],
    [1, 1, 1, 1],
    [1, 1, 1, 1]])

> np.zeros((3,4),int)
array([[0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0]])

仿range命令创建ndarray:

> np.arange(2,10,2) # 开始,结束,步长
array([2, 4, 6, 8])

二、ndarray属性的查看和操作:

看ndarray属性:

> a = [[1,2,3,4,5],[6,7,8,9,0]]
> b = np.array(a)
> b.ndim #维度个数(看几维)
2
> b.shape #维度大小(看具体长宽)
(5,2)
>b.dtype
dtype('int32')

ndarray创建时指定属性:

> np.array([1,2,3,4,5],dtype=np.float64)
array([ 1., 2., 3., 4., 5.])

> np.zeros((2,5),dtype=np.int32)
array([[0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0]])

属性强转:

> a = np.array([1,2,3,4,5],dtype=np.float64)
> a
array([ 1., 2., 3., 4., 5.])

> a.astype(np.int32)
 array([1, 2, 3, 4, 5])

三、简单操作:

批量运算:

> a = np.array([1,2,3,4,5],dtype=np.int32)
> a
array([1, 2, 3, 4, 5])

> a + a
array([ 2, 4, 6, 8, 10])

> a * a
array([ 1, 4, 9, 16, 25])

> a - 2
array([-1, 0, 1, 2, 3])

> a / 2
array([ 0.5, 1. , 1.5, 2. , 2.5])

#等等

改变维度:

> a = np.array([[1,2,3,4,5],[6,7,8,9,0]],dtype=np.int32)
> a
array([[1, 2, 3, 4, 5],
    [6, 7, 8, 9, 0]])

> a.reshape((5,2))
array([[1, 2],
    [3, 4],
    [5, 6],
    [7, 8],
    [9, 0]])

矩阵转换(和改变维度有本质区别,仔细):

> a = np.array([[1,2,3,4,5],[6,7,8,9,0]],dtype=np.int32)
> a
array([[1, 2, 3, 4, 5],
    [6, 7, 8, 9, 0]])

> a.transpose()
array([[1, 6],
    [2, 7],
    [3, 8],
    [4, 9],
    [5, 0]])

打乱(只能打乱一维):

> a = np.array([[1,2],[3,4],[5,6],[7,8],[9,0]],dtype=np.int32)
> a
array([[1, 2],
    [3, 4],
    [5, 6],
    [7, 8],
    [9, 0]])
    
> np.random.shuffle(a)
> a
array([[9, 0],
    [1, 2],
    [7, 8],
    [5, 6],
    [3, 4]])

四、切片和索引:

一维数组(和普通列表一样):

> a = np.array(range(10))
> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

> a[3]
3

> a[2:9:2]
array([2, 4, 6, 8])

多维数组(也差不了多少):

> a = np.array([[1,2,3,4,5],[6,7,8,9,0],[11,12,13,14,15]],dtype=np.int32)

> a
array([[ 1, 2, 3, 4, 5],
    [ 6, 7, 8, 9, 0],
    [11, 12, 13, 14, 15]])
   

> a[:, 1:4]
array([[ 2, 3, 4],
    [ 7, 8, 9],
    [12, 13, 14]])

条件索引:

> a = np.array([[1,2,3,4,5],[6,7,8,9,0],[11,12,13,14,15]],dtype=np.int32)

> a
array([[ 1, 2, 3, 4, 5],
    [ 6, 7, 8, 9, 0],
    [11, 12, 13, 14, 15]])
   

> a > 5
array([[False, False, False, False, False],
    [ True, True, True, True, False],
    [ True, True, True, True, True]], dtype=bool)

> a[a>5]
array([ 6, 7, 8, 9, 11, 12, 13, 14, 15])

> a%3 == 0
Out[128]: 
array([[False, False, True, False, False],
    [ True, False, False, True, True],
    [False, True, False, False, True]], dtype=bool)

> a[a%3 == 0]
array([ 3, 6, 9, 0, 12, 15])

五、函数(numpy核心知识点)

计算函数(都不想举例了,太简单。。):

np.ceil(): 向上最接近的整数,参数是 number 或 array
np.floor(): 向下最接近的整数,参数是 number 或 array
np.rint(): 四舍五入,参数是 number 或 array
np.isnan(): 判断元素是否为 NaN(Not a Number),参数是 number 或 array
np.multiply(): 元素相乘,参数是 number 或 array
np.divide(): 元素相除,参数是 number 或 array
np.abs():元素的绝对值,参数是 number 或 array
np.where(condition, x, y): 三元运算符,x if condition else y
> a = np.random.randn(3,4)
> a
array([[ 0.37091654, 0.53809133, -0.99434523, -1.21496837],
    [ 0.00701986, 1.65776152, 0.41319601, 0.41356973],
    [-0.32922342, 1.07773886, -0.27273258, 0.29474435]])

> np.ceil(a)   
array([[ 1., 1., -0., -1.],
    [ 1., 2., 1., 1.],
    [-0., 2., -0., 1.]])


> np.where(a>0, 10, 0)
array([[10, 10, 0, 0],
    [10, 10, 10, 10],
    [ 0, 10, 0, 10]])

统计函数

np.mean():所有元素的平均值
np.sum():所有元素的和,参数是 number 或 array
np.max():所有元素的最大值
np.min():所有元素的最小值,参数是 number 或 array
np.std():所有元素的标准差
np.var():所有元素的方差,参数是 number 或 array
np.argmax():最大值的下标索引值,
np.argmin():最小值的下标索引值,参数是 number 或 array
np.cumsum():返回一个一维数组,每个元素都是之前所有元素的累加和
np.cumprod():返回一个一维数组,每个元素都是之前所有元素的累乘积,参数是 number 或 array
> a = np.arange(12).reshape(3,4).transpose()
> a
array([[ 0, 4, 8],
    [ 1, 5, 9],
    [ 2, 6, 10],
    [ 3, 7, 11]])

> np.mean(a)
5.5

> np.sum(a)
66

> np.argmax(a)
11

> np.std(a)
3.4520525295346629

> np.cumsum(a)
array([ 0, 4, 12, 13, 18, 27, 29, 35, 45, 48, 55, 66], dtype=int32)

判断函数:

np.any(): 至少有一个元素满足指定条件,返回True
np.all(): 所有的元素满足指定条件,返回True
> a = np.random.randn(2,3)
> a
array([[-0.65750548, 2.24801371, -0.26593284],
    [ 0.31447911, -1.0215645 , -0.4984958 ]])

> np.any(a>0)
True

> np.all(a>0)
False

去除重复:

np.unique(): 去重
> a = np.array([[1,2,3],[2,3,4]])
> a
array([[1, 2, 3],
    [2, 3, 4]])

> np.unique(a)
array([1, 2, 3, 4])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
Numpy,用法

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?