线性模型
线性模型介绍
线性模型是很常见的机器学习模型,通常通过线性的公式来拟合训练数据集。训练集包括(x,y),x为特征,y为目标。如下图:
将真实值和预测值用于构建损失函数,训练的目标是最小化这个函数,从而更新w。当损失函数达到最小时(理想上,实际情况可能会陷入局部最优),此时的模型为最优模型,线性模型常见的的损失函数:
线性模型例子
下面通过一个例子可以观察不同权重(w)对模型损失函数的影响。
#author:yuquanle #data:2018.2.5 #Study of Linear Model import numpy as np import matplotlib.pyplot as plt x_data = [1.0, 2.0, 3.0] y_data = [2.0, 4.0, 6.0] def forward(x): return x * w def loss(x, y): y_pred = forward(x) return (y_pred - y)*(y_pred - y) w_list = [] mse_list = [] for w in np.arange(0.0, 4.1, 0.1): print("w=", w) l_sum = 0 for x_val, y_val in zip(x_data, y_data): # error l = loss(x_val, y_val) l_sum += l print("MSE=", l_sum/3) w_list.append(w) mse_list.append(l_sum/3) plt.plot(w_list, mse_list) plt.ylabel("Loss") plt.xlabel("w") plt.show() 输出结果: w= 0.0 MSE= 18.6666666667 w= 0.1 MSE= 16.8466666667 w= 0.2 MSE= 15.12 w= 0.3 MSE= 13.4866666667 w= 0.4 MSE= 11.9466666667 w= 0.5 MSE= 10.5 w= 0.6 MSE= 9.14666666667
调整w,loss变化图:
可以发现当w=2时,loss最小。但是现实中最常见的情况是,我们知道数据集,定义好损失函数之后(loss),我们并不会从0到n去设置w的值,然后求loss,最后选取使得loss最小的w作为最佳模型的参数。更常见的做法是,首先随机初始化w的值,然后根据loss函数定义对w求梯度,然后通过w的梯度来更新w的值,这就是经典的梯度下降法思想。
梯度下降法
梯度的本意是一个向量,表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。
梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。即每次更新参数w减去其梯度(通常会乘以学习率)。
#author:yuquanle #data:2018.2.5 #Study of SGD x_data = [1.0, 2.0, 3.0] y_data = [2.0, 4.0, 6.0] # any random value w = 1.0 # forward pass def forward(x): return x * w def loss(x, y): y_pred = forward(x) return (y_pred - y)*(y_pred - y) # compute gradient (loss对w求导) def gradient(x, y): return 2*x*(x*w - y) # Before training print("predict (before training)", 4, forward(4)) # Training loop for epoch in range(20): for x, y in zip(x_data, y_data): grad = gradient(x, y) w = w - 0.01 * grad print("\t grad: ",x, y, grad) l = loss(x, y) print("progress:", epoch, l) # After training print("predict (after training)", 4, forward(4)) 输出结果: predict (before training) 4 4.0 grad: 1.0 2.0 -2.0 grad: 2.0 4.0 -7.84 grad: 3.0 6.0 -16.2288 progress: 0 4.919240100095999 grad: 1.0 2.0 -1.478624 grad: 2.0 4.0 -5.796206079999999 grad: 3.0 6.0 -11.998146585599997 progress: 1 2.688769240265834 grad: 1.0 2.0 -1.093164466688 grad: 2.0 4.0 -4.285204709416961 grad: 3.0 6.0 -8.87037374849311 progress: 2 1.4696334962911515 grad: 1.0 2.0 -0.8081896081960389 grad: 2.0 4.0 -3.1681032641284723 grad: 3.0 6.0 -6.557973756745939 progress: 3 0.8032755585999681 grad: 1.0 2.0 -0.59750427561463 grad: 2.0 4.0 -2.3422167604093502 grad: 3.0 6.0 -4.848388694047353 progress: 4 0.43905614881022015 grad: 1.0 2.0 -0.44174208101320334 grad: 2.0 4.0 -1.7316289575717576 grad: 3.0 6.0 -3.584471942173538 progress: 5 0.2399802903801062 grad: 1.0 2.0 -0.3265852213980338 grad: 2.0 4.0 -1.2802140678802925 grad: 3.0 6.0 -2.650043120512205 progress: 6 0.1311689630744999 grad: 1.0 2.0 -0.241448373202223 grad: 2.0 4.0 -0.946477622952715 grad: 3.0 6.0 -1.9592086795121197 progress: 7 0.07169462478267678 grad: 1.0 2.0 -0.17850567968888198 grad: 2.0 4.0 -0.6997422643804168 grad: 3.0 6.0 -1.4484664872674653 progress: 8 0.03918700813247573 grad: 1.0 2.0 -0.13197139106214673 grad: 2.0 4.0 -0.5173278529636143 grad: 3.0 6.0 -1.0708686556346834 progress: 9 0.021418922423117836 predict (after training) 4 7.804863933862125
反向传播
但是在定义好模型之后,使用pytorch框架不需要我们手动的求导,我们可以通过反向传播将梯度往回传播。通常有二个过程,forward和backward:
#author:yuquanle #data:2018.2.6 #Study of BackPagation import torch from torch import nn from torch.autograd import Variable x_data = [1.0, 2.0, 3.0] y_data = [2.0, 4.0, 6.0] # Any random value w = Variable(torch.Tensor([1.0]), requires_grad=True) # forward pass def forward(x): return x*w # Before training print("predict (before training)", 4, forward(4)) def loss(x, y): y_pred = forward(x) return (y_pred-y)*(y_pred-y) # Training: forward, backward and update weight # Training loop for epoch in range(10): for x, y in zip(x_data, y_data): l = loss(x, y) l.backward() print("\t grad:", x, y, w.grad.data[0]) w.data = w.data - 0.01 * w.grad.data # Manually zero the gradients after running the backward pass and update w w.grad.data.zero_() print("progress:", epoch, l.data[0]) # After training print("predict (after training)", 4, forward(4)) 输出结果: predict (before training) 4 Variable containing: 4 [torch.FloatTensor of size 1] grad: 1.0 2.0 -2.0 grad: 2.0 4.0 -7.840000152587891 grad: 3.0 6.0 -16.228801727294922 progress: 0 7.315943717956543 grad: 1.0 2.0 -1.478623867034912 grad: 2.0 4.0 -5.796205520629883 grad: 3.0 6.0 -11.998146057128906 progress: 1 3.9987640380859375 grad: 1.0 2.0 -1.0931644439697266 grad: 2.0 4.0 -4.285204887390137 grad: 3.0 6.0 -8.870372772216797 progress: 2 2.1856532096862793 grad: 1.0 2.0 -0.8081896305084229 grad: 2.0 4.0 -3.1681032180786133 grad: 3.0 6.0 -6.557973861694336 progress: 3 1.1946394443511963 grad: 1.0 2.0 -0.5975041389465332 grad: 2.0 4.0 -2.3422164916992188 grad: 3.0 6.0 -4.848389625549316 progress: 4 0.6529689431190491 grad: 1.0 2.0 -0.4417421817779541 grad: 2.0 4.0 -1.7316293716430664 grad: 3.0 6.0 -3.58447265625 progress: 5 0.35690122842788696 grad: 1.0 2.0 -0.3265852928161621 grad: 2.0 4.0 -1.2802143096923828 grad: 3.0 6.0 -2.650045394897461 progress: 6 0.195076122879982 grad: 1.0 2.0 -0.24144840240478516 grad: 2.0 4.0 -0.9464778900146484 grad: 3.0 6.0 -1.9592113494873047 progress: 7 0.10662525147199631 grad: 1.0 2.0 -0.17850565910339355 grad: 2.0 4.0 -0.699742317199707 grad: 3.0 6.0 -1.4484672546386719 progress: 8 0.0582793727517128 grad: 1.0 2.0 -0.1319713592529297 grad: 2.0 4.0 -0.5173273086547852 grad: 3.0 6.0 -1.070866584777832 progress: 9 0.03185431286692619 predict (after training) 4 Variable containing: 7.8049 [torch.FloatTensor of size 1] Process finished with exit code 0
以上这篇PyTorch: 梯度下降及反向传播的实例详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]