圆月山庄资源网 Design By www.vgjia.com

拼接张量:torch.cat() 、torch.stack()

  1. torch.cat(inputs, dimension=0) → Tensor

在给定维度上对输入的张量序列 seq 进行连接操作

举个例子:

> import torch
> x = torch.randn(2, 3)
> x
tensor([[-0.1997, -0.6900, 0.7039],
    [ 0.0268, -1.0140, -2.9764]])
> torch.cat((x, x, x), 0) # 在 0 维(纵向)进行拼接
tensor([[-0.1997, -0.6900, 0.7039],
    [ 0.0268, -1.0140, -2.9764],
    [-0.1997, -0.6900, 0.7039],
    [ 0.0268, -1.0140, -2.9764],
    [-0.1997, -0.6900, 0.7039],
    [ 0.0268, -1.0140, -2.9764]])
> torch.cat((x, x, x), 1) # 在 1 维(横向)进行拼接
tensor([[-0.1997, -0.6900, 0.7039, -0.1997, -0.6900, 0.7039, -0.1997, -0.6900,
     0.7039],
    [ 0.0268, -1.0140, -2.9764, 0.0268, -1.0140, -2.9764, 0.0268, -1.0140,
     -2.9764]])
> y1 = torch.randn(5, 3, 6)
> y2 = torch.randn(5, 3, 6)
> torch.cat([y1, y2], 2).size()
torch.Size([5, 3, 12])
> torch.cat([y1, y2], 1).size()
torch.Size([5, 6, 6])

对于需要拼接的张量,维度数量必须相同,进行拼接的维度的尺寸可以不同,但是其它维度的尺寸必须相同。

  • torch.stack(sequence, dim=0)

沿着一个新维度对输入张量序列进行连接。 序列中所有的张量都应该为相同形状

举个例子:

> x1 = torch.randn(2, 3)
> x2 = torch.randn(2, 3)
> torch.stack((x1, x2), 0).size() # 在 0 维插入一个维度,进行区分拼接
torch.Size([2, 2, 3])
> torch.stack((x1, x2), 1).size() # 在 1 维插入一个维度,进行组合拼接
torch.Size([2, 2, 3])
> torch.stack((x1, x2), 2).size()
torch.Size([2, 3, 2])
> torch.stack((x1, x2), 0)
tensor([[[-0.3499, -0.6124, 1.4332],
     [ 0.1516, -1.5439, -0.1758]],

    [[-0.4678, -1.1430, -0.5279],
     [-0.4917, -0.6504, 2.2512]]])
> torch.stack((x1, x2), 1)
tensor([[[-0.3499, -0.6124, 1.4332],
     [-0.4678, -1.1430, -0.5279]],

    [[ 0.1516, -1.5439, -0.1758],
     [-0.4917, -0.6504, 2.2512]]])
> torch.stack((x1, x2), 2)
tensor([[[-0.3499, -0.4678],
     [-0.6124, -1.1430],
     [ 1.4332, -0.5279]],

    [[ 0.1516, -0.4917],
     [-1.5439, -0.6504],
     [-0.1758, 2.2512]]])

把相同形状的张量合并,并根据提供的维度序列在相应位置插入维度,方法会根据位置来排列数据。代码中,根据第 0 维和第 1 维来进行合并时,虽然合并后的张量维度和尺寸相等,但是数据的位置并不是相同的。

拆分张量:torch.split()、torch.chunk()

  • torch.split(tensor, split_size, dim=0)

将输入张量分割成相等形状的 chunks(如果可分)。 如果沿指定维的张量形状大小不能被 split_size 整分, 则最后一个分块会小于其它分块。

举个例子:

> x = torch.randn(3, 10, 6)
> a, b, c = x.split(1, 0) # 在 0 维进行间隔维 1 的拆分
> a.size(), b.size(), c.size()
(torch.Size([1, 10, 6]), torch.Size([1, 10, 6]), torch.Size([1, 10, 6]))
> d, e = x.split(2, 0) # 在 0 维进行间隔维 2 的拆分
> d.size(), e.size()
(torch.Size([2, 10, 6]), torch.Size([1, 10, 6]))

把张量在 0 维度上以间隔 1 来拆分时,其中 x 在 0 维度上的尺寸为 3,就可以分成 3 份。

把张量在 0 维度上以间隔 2 来拆分时,只能分成 2 份,且只能把前面部分先以间隔 2 来拆分,后面不足 2 的部分就直接作为一个分块。

  • torch.chunk(tensor, chunks, dim=0)

在给定维度(轴)上将输入张量进行分块儿

直接用上面的数据来举个例子:

> l, m, n = x.chunk(3, 0) # 在 0 维上拆分成 3 份
> l.size(), m.size(), n.size()
(torch.Size([1, 10, 6]), torch.Size([1, 10, 6]), torch.Size([1, 10, 6]))
> u, v = x.chunk(2, 0) # 在 0 维上拆分成 2 份
> u.size(), v.size()
(torch.Size([2, 10, 6]), torch.Size([1, 10, 6]))

把张量在 0 维度上拆分成 3 部分时,因为尺寸正好为 3,所以每个分块的间隔相等,都为 1。

把张量在 0 维度上拆分成 2 部分时,无法平均分配,以上面的结果来看,可以看成是,用 0 维度的尺寸除以需要拆分的份数,把余数作为最后一个分块的间隔大小,再把前面的分块以相同的间隔拆分。

在某一维度上拆分的份数不能比这一维度的尺寸大

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
PyTorch,Tensor,拼接,PyTorch,Tensor,拆分,PyTorch,Tensor,拼接与拆分

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?