圆月山庄资源网 Design By www.vgjia.com

1。总体概要

kNN算法已经在上一篇博客中说明。对于要处理手写体数字,需要处理的点主要包括:

(1)图片的预处理:将png,jpg等格式的图片转换成文本数据,本博客的思想是,利用图片的rgb16进制编码(255,255,255)为白色,(0,0,0)为黑色,获取图片大小后,逐个像素进行判断分析,当此像素为空白时,在文本数据中使用0来替换,反之使用1来替换。

from PIL import Image
'''将图片转换成文档,使用0,1分别替代空白和数字'''
pic = Image.open('/Users/wangxingfan/Desktop/1.png')
path = open('/Users/wangxingfan/Desktop/1.txt','a')
width = pic.size[0]
height = pic.size[1]
for i in range(0,width):
 for j in range(0,height):
  c_RGB = pic.getpixel((i,j))#获取该像素所对应的RGB值
  if c_RGB[0]+c_RGB[1]+c_RGB[2]>0:#白色
   path.write('0')
  elif c_RGB[0]+c_RGB[1]+c_RGB[2]==0:#黑色
   path.write('1')
  else:
   pass
 path.write('\n')
path.close()

(2)训练集的构建。首先想到的是将(1)中图片处理后的文本数据构建成list形式,所以训练集将是二维数组,形如[[1,0,1,1,0,,,,,0,1],[0,1,1,1,10,,,,],[0,0,1,0,,,],,,,,]所以我们构建函数处理训练集数据。

2。代码

简单的总结这个算法,就是将测试数据向量化,逐个和同样向量化的训练数据进行kNN运算,求的最短距离出现最多的分类就是我们要的分类。建立训练集的过程就是将文件数据向量化的过程。

#!/user/bin/env python
#-*- coding:utf-8 -*-
from os import listdir#获取文件目录下所有文件
'''
from PIL import Image
#将图片转换成文档,使用0,1分别替代空白和数字
pic = Image.open('/Users/wangxingfan/Desktop/1.png')
path = open('/Users/wangxingfan/Desktop/1.txt','a')
width = pic.size[0]
height = pic.size[1]
for i in range(0,width):
 for j in range(0,height):
  c_RGB = pic.getpixel((i,j))#获取该像素所对应的RGB值
  if c_RGB[0]+c_RGB[1]+c_RGB[2]>0:#白色
   path.write('0')
  elif c_RGB[0]+c_RGB[1]+c_RGB[2]==0:#黑色
   path.write('1')
  else:
   pass
 path.write('\n')
path.close()
'''
import numpy as np
import operator as opt

def kNN(dataSet, labels, testData, k):
 '''首先明确列表不能想加减,dataSet是数组形式,而对于下面的test函数,testData只是一列,相当于列表,所以在进行加减时,需要将其转换为数组,我们使用np下的tile函数来实现'''
 testDatasize = dataSet.shape[0]#获取dataSet的总行数
 dataSet = dataSet.astype('float64')#不进行转换则报错
 testData1 = np.tile(testData,(testDatasize,1))#使用tile函数返回多个重复构成的数组
 testData1 = testData1.astype('float64')
 distSquareMat = (dataSet - testData1) ** 2 # 计算差值的平方
 distSquareSums = distSquareMat.sum(axis=1) # 求每一行的差值平方和,axis=0则按列计算
 distances = distSquareSums ** 0.5 # 开根号,得出每个样本到测试点的距离
 sortedIndices = distances.argsort() # 排序,得到排序后的下标
 indices = sortedIndices[:k] # 取最小的k个
 labelCount = {} # 存储每个label的出现次数,出现次数最多的就是我们要选择的类别
 for i in indices:
  label = labels[i]
  labelCount[label] = labelCount.get(label, 0) + 1 # 次数加一,使用字典的get方法,第一次出现时默认值是0
 sortedCount = sorted(labelCount.items(), key=opt.itemgetter(1), reverse=True) # 对label出现的次数从大到小进行排序
 return sortedCount[0][0] # 返回出现次数最大的label

#定义函数读取某个文件,返回该文件组成的数组
def file_data(fname):
 arr = []
 path = open(fname)
 for i in range(0,32):
  line = path.readline()
  for j in range(0,32):
   arr.append(line[j])
 return arr

#建立训练数据集
def train_data():
 lables = []
 file_list = listdir('/学习/视频课程/源码/第7周/testandtraindata/traindata/')
 trainarr = np.zeros((len(file_list),1024))
 for i in range(0,len(file_list)):
  file = '/学习/视频课程/源码/第7周/testandtraindata/traindata/'+file_list[i]
  lables.append(file_list[i].split('_')[0])#获取对应的文件类别
  trainarr[i,:] = file_data(file)#取所有列的第一个数据
 return trainarr,lables

#测试函数
def test():
 j = 0
 k = 0
 trainarr,lables = train_data()
 testdata_list = listdir('/学习/视频课程/源码/第7周/testandtraindata/testdata/')
 for i in range(0,len(testdata_list)):#逐个去测试
  testfile = '/学习/视频课程/源码/第7周/testandtraindata/testdata/'+testdata_list[i]
  testdata1 = file_data(testfile)
  result = kNN(trainarr,lables,testdata1,k=3)
  print(result+',real_number:'+testdata_list[i].split('_')[0])
  if result == testdata_list[i].split('_')[0]:
   j +=1
  else:
   k +=1

 print('辨识成功率:'+j/(k+j))

test()

输出结果为:

python实现kNN算法识别手写体数字的示例代码

3。几个知识点代码说明

(1)numpy.tile

p = np.array([0,0,0])
np.tile(p,(3,1))#表示columns方向重复三次,index方向不变
Out[12]: 
array([[0, 0, 0],
  [0, 0, 0],
  [0, 0, 0]])
np.tile(p,(1,3))#表示index方向重复三次,行还是一行
Out[13]: array([[0, 0, 0, 0, 0, 0, 0, 0, 0]])

(2)array[1,:]表示取所有列的第【索引1】个数据(也就是第二行数据)

a = np.array([[1,1,1],[2,2,2],[3,3,3],[4,4,4]])
a[1,:]
Out[21]: array([2, 2, 2])
a[:,1]#所有行的第二列数据
Out[22]: array([1, 2, 3, 4])

(3)list并不能进行加减计算,需要使用numpy将数据转换为数组形式,且在使用例如:arr1+arr2时,需要两个数组的维度相同,在某个纬度上的数据长度也相同。

(4)使用os模块下的listdir,可以显示所有该文件夹下的文件,以列表的形式返回。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
python,kNN识别手写体数字,python,kNN手写体数字

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?