圆月山庄资源网 Design By www.vgjia.com

Python实现时间序列可视化的方法

时间序列数据在数据科学领域无处不在,在量化金融领域也十分常见,可以用于分析价格趋势,预测价格,探索价格行为等。

学会对时间序列数据进行可视化,能够帮助我们更加直观地探索时间序列数据,寻找其潜在的规律。

本文会利用Python中的matplotlib【1】库,并配合实例进行讲解。matplotlib库是一个用于创建出版质量图表的桌面绘图包(2D绘图库),是Python中最基本的可视化工具。

【工具】Python 3

【数据】Tushare

【注】示例注重的是方法的讲解,请大家灵活掌握。

1.单个时间序列

首先,我们从tushare.pro获取指数日线行情数据,并查看数据类型。

import tushare as ts 
import pandas as pd 
pd.set_option('expand_frame_repr', False) # 显示所有列 
ts.set_token('your token') 
pro = ts.pro_api() 
df = pro.index_daily(ts_code='399300.SZ')[['trade_date', 'close']] 
df.sort_values('trade_date', inplace=True)  
df.reset_index(inplace=True, drop=True) 
print(df.head()) 
 trade_date  close 
0  20050104 982.794 
1  20050105 992.564 
2  20050106 983.174 
3  20050107 983.958 
4  20050110 993.879 
print(df.dtypes) 
trade_date   object 
close     float64 
dtype: object 

交易时间列'trade_date' 不是时间类型,而且也不是索引,需要先进行转化。

df['trade_date'] = pd.to_datetime(df['trade_date']) 
df.set_index('trade_date', inplace=True) 
print(df.head()) 
       close 
trade_date      
2005-01-04 982.794 
2005-01-05 992.564 
2005-01-06 983.174 
2005-01-07 983.958 
2005-01-10 993.879 

接下来,就可以开始画图了,我们需要导入matplotlib.pyplot【2】,然后通过设置set_xlabel()set_xlabel()为x轴和y轴添加标签。

import matplotlib.pyplot as plt 
ax = df.plot(color='') 
ax.set_xlabel('trade_date') 
ax.set_ylabel('399300.SZ close') 
plt.show()

Python实现时间序列可视化的方法

matplotlib库中有很多内置图表样式可以选择,通过打印plt.style.available查看具体都有哪些选项,应用的时候直接调用plt.style.use('fivethirtyeight')即可。

print(plt.style.available) 
['bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark-palette', 'seaborn-dark', 'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'seaborn', 'Solarize_Light2', 'tableau-colorblind10', '_classic_test'] 
 plt.style.use('fivethirtyeight') 
ax1 = df.plot() 
ax1.set_title('FiveThirtyEight Style') 
plt.show()

Python实现时间序列可视化的方法

2.设置更多细节

上面画出的是一个很简单的折线图,其实可以在plot()里面通过设置不同参数的值,为图添加更多细节,使其更美观、清晰。

figsize(width, height)设置图的大小,linewidth设置线的宽度,fontsize设置字体大小。然后,调用set_title()方法设置标题。

ax = df.plot(color='blue', figsize=(8, 3), linewidth=2, fontsize=6) 
ax.set_title('399300.SZ close from 2005-01-04 to 2019-07-04', fontsize=8) 
plt.show()

Python实现时间序列可视化的方法

如果想要看某一个子时间段内的折线变化情况,可以直接截取该时间段再作图即可,如df['2018-01-01': '2019-01-01']

dfdf_subset_1 = df['2018-01-01':'2019-01-01'] 
ax = df_subset_1.plot(color='blue', fontsize=10) 


plt.show()

Python实现时间序列可视化的方法

如果想要突出图中的某一日期或者观察值,可以调用.axvline()和.axhline()方法添加垂直和水平参考线。

ax = df.plot(color='blue', fontsize=6) 
ax.axvline('2019-01-01', color='red', linestyle='--') 
ax.axhline(3000, color='green', linestyle='--') 
plt.show()

Python实现时间序列可视化的方法

也可以调用axvspan()的方法为一段时间添加阴影标注,其中alpha参数设置的是阴影的透明度,0代表完全透明,1代表全色。

ax = df.plot(color='blue', fontsize=6) 
ax.axvspan('2018-01-01', '2019-01-01', color='red', alpha=0.3) 
ax.axhspan(2000, 3000, color='green', alpha=0.7) 
plt.show()

Python实现时间序列可视化的方法

3.移动平均时间序列

有时候,我们想要观察某个窗口期的移动平均值的变化趋势,可以通过调用窗口函数rolling来实现。下面实例中显示的是,以250天为窗口期的移动平均线close,以及与移动标准差的关系构建的上下两个通道线upper和lower。

ma = df.rolling(window=250).mean() 
mstd = df.rolling(window=250).std() 
ma['upper'] = ma['close'] + (mstd['close'] * 2) 
ma['lower'] = ma['close'] - (mstd['close'] * 2) 
ax = ma.plot(linewidth=0.8, fontsize=6) 
ax.set_xlabel('trade_date', fontsize=8) 
ax.set_ylabel('399300.SZ close from 2005-01-04 to 2019-07-04', fontsize=8) 
ax.set_title('Rolling mean and variance of 399300.SZ cloe from 2005-01-04 to 2019-07-04', fontsize=10) 
plt.show()

Python实现时间序列可视化的方法

4.多个时间序列

如果想要可视化多个时间序列数据,同样可以直接调用plot()方法。示例中我们从tushare.pro上面选取三只股票的日线行情数据进行分析。

# 获取数据 
code_list = ['000001.SZ', '000002.SZ', '600000.SH'] 
data_list = [] 
for code in code_list: 
  print(code) 
  df = pro.daily(ts_code=code, start_date='20180101', end_date='20190101')[['trade_date', 'close']] 
  df.sort_values('trade_date', inplace=True) 
  df.rename(columns={'close': code}, inplace=True) 
  df.set_index('trade_date', inplace=True) 
  data_list.append(df) 
df = pd.concat(data_list, axis=1) 
print(df.head()) 
000001.SZ 
000002.SZ 
600000.SH 
      000001.SZ 000002.SZ 600000.SH 
trade_date                  
20180102    13.70   32.56   12.72 
20180103    13.33   32.33   12.66 
20180104    13.25   33.12   12.66 
20180105    13.30   34.76   12.69 
20180108    12.96   35.99   12.68 
# 画图 
ax = df.plot(linewidth=2, fontsize=12) 
ax.set_xlabel('trade_date') 
ax.legend(fontsize=15) 
plt.show()

Python实现时间序列可视化的方法

调用.plot.area()方法可以生成时间序列数据的面积图,显示累计的总数。

ax = df.plot.area(fontsize=12) 
ax.set_xlabel('trade_date') 
ax.legend(fontsize=15) 
plt.show()

Python实现时间序列可视化的方法

如果想要在不同子图中单独显示每一个时间序列,可以通过设置参数subplots=True来实现。layout指定要使用的行列数,sharex和sharey用于设置是否共享行和列,colormap='viridis' 为每条线设置不同的颜色。

df.plot(subplots=True, 
     layout=(2, 2), 
     sharex=False, 
     sharey=False, 
     colormap='viridis', 
     fontsize=7, 
     legend=False, 
     linewidth=0.3) 
plt.show()

Python实现时间序列可视化的方法

5.总结

本文主要介绍了如何利用Python中的matplotlib库对时间序列数据进行一些简单的可视化操作,包括可视化单个时间序列并设置图中的细节,可视化移动平均时间序列和多个时间序列。

以上所述是小编给大家介绍的Python实现时间序列可视化的方法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

标签:
python,时间序列,python,可视化

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?