需求
有一个抽奖应用,从所有参与的用户抽出K位中奖用户(K=奖品数量),且要根据每位用户拥有的抽奖码数量作为权重。
如假设有三个用户及他们的权重是: A(1), B(1), C(2)。希望抽到A的概率为25%,抽到B的概率为25%, 抽到C的概率为50%。
分析
比较直观的做法是把两个C放到列表中抽选,如[A, B, C, C], 使用Python内置的函数random.choice[A, B, C, C], 这样C抽到的概率即为50%。
这个办法的问题是权重比较大的时候,浪费内存空间。
更一般的方法是,将所有权重加和4,然后从[0, 4)区间里随机挑选一个值,将A, B, C占用不同大小的区间。[0,1)是A, [1,2)是B, [2,4)是C。
使用Python的函数random.ranint(0, 3)或者int(random.random()*4)均可产生0-3的随机整数R。判断R在哪个区间即选择哪个用户。
接下来是寻找随机数在哪个区间的方法,
一种方法是按顺序遍历列表并保存已遍历的元素权重综合S,一旦S大于R,就返回当前元素。
from operator import itemgetter users = [('A', 1), ('B', 1), ('C', 2)] total = sum(map(itemgetter(1), users)) rnd = int(random.random()*total) # 0~3 s = 0 for u, w in users: s += w if s > rnd: return u
不过这种方法的复杂度是O(N), 因为要遍历所有的users。
可以想到另外一种方法,先按顺序把累积加的权重排成列表,然后对它使用二分法搜索,二分法复杂度降到O(logN)(除去其他的处理)
users = [('A', 1), ('B', 1), ('C', 2)] cum_weights = list(itertools.accumulate(map(itemgetter(1), users))) # [1, 2, 4] total = cum_weights[-1] rnd = int(random.random()*total) # 0~3 hi = len(cum_weights) - 1 index = bisect.bisect(cum_weights, rnd, 0, hi) return users(index)[0]
Python内置库random的choices函数(3.6版本后有)即是如此实现,random.choices函数签名为 random.choices(population, weights=None, *, cum_weights=None, k=1) population是待选列表, weights是各自的权重,cum_weights是可选的计算好的累加权重(两者选一),k是抽选数量(有回置抽选)。 源码如下:
def choices(self, population, weights=None, *, cum_weights=None, k=1): """Return a k sized list of population elements chosen with replacement. If the relative weights or cumulative weights are not specified, the selections are made with equal probability. """ random = self.random if cum_weights is None: if weights is None: _int = int total = len(population) return [population[_int(random() * total)] for i in range(k)] cum_weights = list(_itertools.accumulate(weights)) elif weights is not None: raise TypeError('Cannot specify both weights and cumulative weights') if len(cum_weights) != len(population): raise ValueError('The number of weights does not match the population') bisect = _bisect.bisect total = cum_weights[-1] hi = len(cum_weights) - 1 return [population[bisect(cum_weights, random() * total, 0, hi)] for i in range(k)]
更进一步
因为Python内置的random.choices是有回置抽选,无回置抽选函数是random.sample,但该函数不能根据权重抽选(random.sample(population, k))。
原生的random.sample可以抽选个多个元素但不影响原有的列表,其使用了两种算法实现, 保证了各种情况均有良好的性能。 (源码地址:random.sample)
第一种是部分shuffle,得到K个元素就返回。 时间复杂度是O(N),不过需要复制原有的序列,增加内存使用。
result = [None] * k n = len(population) pool = list(population) # 不改变原有的序列 for i in range(k): j = int(random.random()*(n-i)) result[k] = pool[j] pool[j] = pool[n-i-1] # 已选中的元素移走,后面未选中元素填上 return result
而第二种是设置一个已选择的set,多次随机抽选,如果抽中的元素在set内,就重新再抽,无需复制新的序列。 当k相对n较小时,random.sample使用该算法,重复选择元素的概率较小。
selected = set() selected_add = selected.add # 加速方法访问 for i in range(k): j = int(random.random()*n) while j in selected: j = int(random.random()*n) selected_add(j) result[j] = population[j] return result
抽奖应用需要的是带权无回置抽选算法,结合random.choices和random.sample的实现写一个函数weighted_sample。
一般抽奖的人数都比奖品数量大得多,可选用random.sample的第二种方法作为无回置抽选,当然可以继续优化。
代码如下:
def weighted_sample(population, weights, k=1): """Like random.sample, but add weights. """ n = len(population) if n == 0: return [] if not 0 <= k <= n: raise ValueError("Sample larger than population or is negative") if len(weights) != n: raise ValueError('The number of weights does not match the population') cum_weights = list(itertools.accumulate(weights)) total = cum_weights[-1] if total <= 0: # 预防一些错误的权重 return random.sample(population, k=k) hi = len(cum_weights) - 1 selected = set() _bisect = bisect.bisect _random = random.random selected_add = selected.add result = [None] * k for i in range(k): j = _bisect(cum_weights, _random()*total, 0, hi) while j in selected: j = _bisect(cum_weights, _random()*total, 0, hi) selected_add(j) result[i] = population[j] return result
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]