圆月山庄资源网 Design By www.vgjia.com
本文使用TensorFlow实现最简单的线性回归模型,供大家参考,具体内容如下
线性拟合y=2.7x+0.6,代码如下:
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt n = 201 # x点数 X = np.linspace(-1, 1, n)[:,np.newaxis] # 等差数列构建X,[:,np.newaxis]这个是shape,这一行构建了一个n维列向量([1,n]的矩阵) noise = np.random.normal(0, 0.5, X.shape) # 噪声值,与X同型 Y = X*2.7 + 0.6 + noise # Y xs = tf.placeholder(tf.float32, [None, 1]) # 下面两行是占位符tf.placeholder(dtype, shape) ys = tf.placeholder(tf.float32, [None, 1]) w = tf.Variable(1.1) # 这两行是weight变量,bias变量,括号中是初始值 b = tf.Variable(0.2) ypredict = tf.add(w*xs,b) # 根据 w, b 产生的预测值 loss = tf.reduce_sum(tf.pow(ys-ypredict,2.0))/n # 损失函数,tf.reduce_sum()按某一维度元素求和,默认为按列 optimizer = tf.train.GradientDescentOptimizer(0.01).minimize(loss) # 梯度下降优化器,0.01学习率,最小化losss init = tf.global_variables_initializer() # 初始化所有变量 with tf.Session() as sess: sess.run(init) # 运行初始化 for i in range (1000): # 迭代1000次 sess.run(optimizer, feed_dict = {xs:X,ys:Y}) # 运行优化器,梯度下降用到loss,计算loss需要xs, ys所以后面需要feed_dict if i%50==0: # 每隔50次迭代输出w,b,loss # 下面sess.run(w),sess.run(b)里面没有feed_dict是因为打印w,b不需要xs,ys,而打印loss需要 print ("w:",sess.run(w),"\t b:", sess.run(b), "\t loss:", sess.run(loss,feed_dict={xs:X,ys:Y})) plt.plot(X,X*sess.run(w)+sess.run(b)) # 运行迭代之后绘制拟合曲线,这需要在sess里面运行是因为要用到w,b plt.scatter(X,Y) # 绘制被拟合数据(散点) plt.show() # 绘制图像
结果:
w: 1.1106868 b: 0.2086223 loss: 1.2682248 w: 1.5626049 b: 0.4772562 loss: 0.7024503 w: 1.8849733 b: 0.57508457 loss: 0.47280872 w: 2.1149294 b: 0.61071056 loss: 0.36368176 w: 2.278966 b: 0.6236845 loss: 0.30917725 w: 2.3959787 b: 0.6284093 loss: 0.2815788 w: 2.4794474 b: 0.6301298 loss: 0.26755357 w: 2.5389886 b: 0.63075644 loss: 0.26041925 w: 2.5814607 b: 0.6309848 loss: 0.2567894 w: 2.611758 b: 0.6310678 loss: 0.25494233 w: 2.6333694 b: 0.6310981 loss: 0.25400248 w: 2.6487865 b: 0.631109 loss: 0.2535242 w: 2.659784 b: 0.63111293 loss: 0.25328085 w: 2.6676288 b: 0.6311139 loss: 0.25315702 w: 2.6732242 b: 0.6311139 loss: 0.25309405 w: 2.6772156 b: 0.6311139 loss: 0.25306198 w: 2.6800632 b: 0.6311139 loss: 0.25304565 w: 2.6820953 b: 0.6311139 loss: 0.25303733 w: 2.6835444 b: 0.6311139 loss: 0.25303313 w: 2.684578 b: 0.6311139 loss: 0.25303096
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
标签:
TensorFlow,线性回归
圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com
暂无评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
2024年11月05日
2024年11月05日
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]