本文实例讲述了Python利用神经网络解决非线性回归问题。分享给大家供大家参考,具体如下:
问题描述
现在我们通常使用神经网络进行分类,但是有时我们也会进行回归分析。
如本文的问题:
我们知道一个生物体内的原始有毒物质的量,然后对这个生物体进行治疗,向其体内注射一个物质,过一段时间后重新测量这个生物体内有毒物质量的多少。
因此,问题中有两个输入,都是标量数据,分别为有毒物质的量和注射物质的量,一个输出,也就是注射治疗物质后一段时间生物体的有毒物质的量。
数据如下图:
其中Dose of Mycotoxins 就是有毒物质,Dose of QCT就是治疗的药物。
其中蓝色底纹的数字就是输出结果。
一些说明
由于本文是进行回归分析,所以最后一层不进行激活,而直接输出。
本文程序使用sigmoid函数进行激活。
本文程序要求程序有一定的可重复性,隐含层可以指定。
另外,注意到
本文将使用数据预处理,也就是将数据减去均值再除以方差,否则使用sigmoid将会导致梯度消失。
因为数据比较大,比如200,这时输入200,当sigmoid函数的梯度就是接近于0了。
与此同时,我们在每一次激活前都进行BN处理,也就是batch normalize,中文可以翻译成规范化。
否则也会导致梯度消失的问题。与预处理情况相同。
程序
程序包括两部分,一部分是模型框架,一个是训练模型
第一部分:
# coding=utf-8 import numpy as np def basic_forard(x, w, b): x = x.reshape(x.shape[0], -1) out = np.dot(x, w) + b cache = (x, w, b) return out, cache def basic_backward(dout, cache): x, w, b = cache dout = np.array(dout) dx = np.dot(dout, w.T) # dx = np.reshape(dx, x.shape) # x = x.reshape(x.shape[0], -1) dw = np.dot(x.T, dout) db = np.reshape(np.sum(dout, axis=0), b.shape) return dx, dw, db def batchnorm_forward(x, gamma, beta, bn_param): mode = bn_param['mode'] eps = bn_param.get('eps', 1e-5) momentum = bn_param.get('momentum', 0.9) N, D = x.shape running_mean = bn_param.get('running_mean', np.zeros(D, dtype=x.dtype)) running_var = bn_param.get('running_var', np.zeros(D, dtype=x.dtype)) out, cache = None, None if mode == 'train': sample_mean = np.mean(x, axis=0) sample_var = np.var(x, axis=0) x_hat = (x - sample_mean) / (np.sqrt(sample_var + eps)) out = gamma * x_hat + beta cache = (gamma, x, sample_mean, sample_var, eps, x_hat) running_mean = momentum * running_mean + (1 - momentum) * sample_mean running_var = momentum * running_var + (1 - momentum) * sample_var elif mode == 'test': scale = gamma / (np.sqrt(running_var + eps)) out = x * scale + (beta - running_mean * scale) else: raise ValueError('Invalid forward batchnorm mode "%s"' % mode) bn_param['running_mean'] = running_mean bn_param['running_var'] = running_var return out, cache def batchnorm_backward(dout, cache): gamma, x, u_b, sigma_squared_b, eps, x_hat = cache N = x.shape[0] dx_1 = gamma * dout dx_2_b = np.sum((x - u_b) * dx_1, axis=0) dx_2_a = ((sigma_squared_b + eps) ** -0.5) * dx_1 dx_3_b = (-0.5) * ((sigma_squared_b + eps) ** -1.5) * dx_2_b dx_4_b = dx_3_b * 1 dx_5_b = np.ones_like(x) / N * dx_4_b dx_6_b = 2 * (x - u_b) * dx_5_b dx_7_a = dx_6_b * 1 + dx_2_a * 1 dx_7_b = dx_6_b * 1 + dx_2_a * 1 dx_8_b = -1 * np.sum(dx_7_b, axis=0) dx_9_b = np.ones_like(x) / N * dx_8_b dx_10 = dx_9_b + dx_7_a dgamma = np.sum(x_hat * dout, axis=0) dbeta = np.sum(dout, axis=0) dx = dx_10 return dx, dgamma, dbeta # def relu_forward(x): # out = None # out = np.maximum(0,x) # cache = x # return out, cache # # # def relu_backward(dout, cache): # dx, x = None, cache # dx = (x >= 0) * dout # return dx def sigmoid_forward(x): x = x.reshape(x.shape[0], -1) out = 1 / (1 + np.exp(-1 * x)) cache = out return out, cache def sigmoid_backward(dout, cache): out = cache dx = out * (1 - out) dx *= dout return dx def basic_sigmoid_forward(x, w, b): basic_out, basic_cache = basic_forard(x, w, b) sigmoid_out, sigmoid_cache = sigmoid_forward(basic_out) cache = (basic_cache, sigmoid_cache) return sigmoid_out, cache # def basic_relu_forward(x, w, b): # basic_out, basic_cache = basic_forard(x, w, b) # relu_out, relu_cache = relu_forward(basic_out) # cache = (basic_cache, relu_cache) # # return relu_out, cache def basic_sigmoid_backward(dout, cache): basic_cache, sigmoid_cache = cache dx_sigmoid = sigmoid_backward(dout, sigmoid_cache) dx, dw, db = basic_backward(dx_sigmoid, basic_cache) return dx, dw, db # def basic_relu_backward(dout, cache): # basic_cache, relu_cache = cache # dx_relu = relu_backward(dout, relu_cache) # dx, dw, db = basic_backward(dx_relu, basic_cache) # # return dx, dw, db def mean_square_error(x, y): x = np.ravel(x) loss = 0.5 * np.sum(np.square(y - x)) / x.shape[0] dx = (x - y).reshape(-1, 1) return loss, dx class muliti_layer_net(object): def __init__(self, hidden_dim, input_dim=2, num_classes=2, weight_scale=0.01, dtype=np.float32, seed=None, reg=0.0, use_batchnorm=True): self.num_layers = 1 + len(hidden_dim) self.dtype = dtype self.reg = reg self.params = {} self.weight_scale = weight_scale self.use_batchnorm = use_batchnorm # init all parameters layers_dims = [input_dim] + hidden_dim + [num_classes] for i in range(self.num_layers): self.params['W' + str(i + 1)] = np.random.randn(layers_dims[i], layers_dims[i + 1]) * self.weight_scale self.params['b' + str(i + 1)] = np.zeros((1, layers_dims[i + 1])) if self.use_batchnorm and i < (self.num_layers - 1): self.params['gamma' + str(i + 1)] = np.ones((1, layers_dims[i + 1])) self.params['beta' + str(i + 1)] = np.zeros((1, layers_dims[i + 1])) self.bn_params = [] # list if self.use_batchnorm: self.bn_params = [{'mode': 'train'} for i in range(self.num_layers - 1)] def loss(self, X, y=None): X = X.astype(self.dtype) mode = 'test' if y is None else 'train' # compute the forward data and cache basic_sigmoid_cache = {} layer_out = {} layer_out[0] = X out_basic_forward, cache_basic_forward = {}, {} out_bn, cache_bn = {}, {} out_sigmoid_forward, cache_sigmoid_forward = {}, {} for lay in range(self.num_layers - 1): # print('lay: %f' % lay) W = self.params['W' + str(lay + 1)] b = self.params['b' + str(lay + 1)] if self.use_batchnorm: gamma, beta = self.params['gamma' + str(lay + 1)], self.params['beta' + str(lay + 1)] out_basic_forward[lay], cache_basic_forward[lay] = basic_forard(np.array(layer_out[lay]), W, b) out_bn[lay], cache_bn[lay] = batchnorm_forward(np.array(out_basic_forward[lay]), gamma, beta, self.bn_params[lay]) layer_out[lay + 1], cache_sigmoid_forward[lay] = sigmoid_forward(np.array(out_bn[lay])) # = out_sigmoid_forward[lay] else: layer_out[lay+1], basic_sigmoid_cache[lay] = basic_sigmoid_forward(layer_out[lay], W, b) score, basic_cache = basic_forard(layer_out[self.num_layers-1], self.params['W' + str(self.num_layers)], self.params['b' + str(self.num_layers)]) # print('Congratulations: Loss is computed successfully!') if mode == 'test': return score # compute the gradient grads = {} loss, dscore = mean_square_error(score, y) dx, dw, db = basic_backward(dscore, basic_cache) grads['W' + str(self.num_layers)] = dw + self.reg * self.params['W' + str(self.num_layers)] grads['b' + str(self.num_layers)] = db loss += 0.5 * self.reg * np.sum(self.params['W' + str(self.num_layers)] * self.params['b' + str(self.num_layers)]) dbn, dsigmoid = {}, {} for index in range(self.num_layers - 1): lay = self.num_layers - 1 - index - 1 loss += 0.5 * self.reg * np.sum(self.params['W' + str(lay + 1)] * self.params['b' + str(lay + 1)]) if self.use_batchnorm: dsigmoid[lay] = sigmoid_backward(dx, cache_sigmoid_forward[lay]) dbn[lay], grads['gamma' + str(lay + 1)], grads['beta' + str(lay + 1)] = batchnorm_backward(dsigmoid[lay], cache_bn[lay]) dx, grads['W' + str(lay + 1)], grads['b' + str(lay + 1)] = basic_backward(dbn[lay], cache_basic_forward[lay]) else: dx, dw, db = basic_sigmoid_backward(dx, basic_sigmoid_cache[lay]) for lay in range(self.num_layers): grads['W' + str(lay + 1)] += self.reg * self.params['W' + str(lay + 1)] return loss, grads def sgd_momentum(w, dw, config=None): if config is None: config = {} config.setdefault('learning_rate', 1e-2) config.setdefault('momentum', 0.9) v = config.get('velocity', np.zeros_like(w)) v = config['momentum'] * v - config['learning_rate'] * dw next_w = w + v config['velocity'] = v return next_w, config class Solver(object): def __init__(self, model, data, **kwargs): self.model = model self.X_train = data['X_train'] self.y_train = data['y_train'] self.X_val = data['X_val'] self.y_val = data['y_val'] self.update_rule = kwargs.pop('update_rule', 'sgd_momentum') self.optim_config = kwargs.pop('optim_config', {}) self.lr_decay = kwargs.pop('lr_decay', 1.0) self.batch_size = kwargs.pop('batch_size', 100) self.num_epochs = kwargs.pop('num_epochs', 10) self.weight_scale = kwargs.pop('weight_scale', 0.01) self.print_every = kwargs.pop('print_every', 10) self.verbose = kwargs.pop('verbose', True) if len(kwargs) > 0: extra = ', '.join('"%s"' % k for k in kwargs.keys()) raise ValueError('Unrecognized argements %s' % extra) self._reset() def _reset(self): self.epoch = 100 self.best_val_acc = 0 self.best_params = {} self.loss_history = [] self.train_acc_history = [] self.val_acc_history = [] self.optim_configs = {} for p in self.model.params: d = {k: v for k, v in self.optim_config.items()} self.optim_configs[p] = d def _step(self): loss, grads = self.model.loss(self.X_train, self.y_train) self.loss_history.append(loss) for p, w in self.model.params.items(): dw = grads[p] config = self.optim_configs[p] next_w, next_config = sgd_momentum(w, dw, config) self.model.params[p] = next_w self.optim_configs[p] = next_config return loss def train(self): min_loss = 100000000 num_train = self.X_train.shape[0] iterations_per_epoch = max(num_train / self.batch_size, 1) num_iterations = self.num_epochs * iterations_per_epoch for t in range(int(num_iterations)): loss = self._step() if self.verbose: # print(self.loss_history[-1]) pass if loss < min_loss: min_loss = loss for k, v in self.model.params.items(): self.best_params[k] = v.copy() self.model.params = self.best_params
第二部分
import numpy as np # import data dose_QCT = np.array([0, 5, 10, 20]) mean_QCT, std_QCT = np.mean(dose_QCT), np.std(dose_QCT) dose_QCT = (dose_QCT - mean_QCT ) / std_QCT dose_toxins = np.array([0, 0.78125, 1.5625, 3.125, 6.25, 12.5, 25, 50, 100, 200]) mean_toxins, std_toxins = np.mean(dose_toxins), np.std(dose_toxins) dose_toxins = (dose_toxins - mean_toxins ) / std_toxins result = np.array([[0, 4.037, 7.148, 12.442, 18.547, 25.711, 34.773, 62.960, 73.363, 77.878], [0, 2.552, 4.725, 8.745, 14.436, 21.066, 29.509, 55.722, 65.976, 72.426], [0, 1.207, 2.252, 4.037, 7.148, 11.442, 17.136, 34.121, 48.016, 60.865], [0, 0.663, 1.207, 2.157, 3.601, 5.615, 8.251, 19.558, 33.847, 45.154]]) mean_result, std_result = np.mean(result), np.std(result) result = (result - mean_result ) / std_result # create the train data train_x, train_y = [], [] for i,qct in enumerate(dose_QCT): for j,toxin in enumerate(dose_toxins): x = [qct, toxin] y = result[i, j] train_x.append(x) train_y.append(y) train_x = np.array(train_x) train_y = np.array(train_y) print(train_x.shape) print(train_y.shape) import layers_regression small_data = {'X_train': train_x, 'y_train': train_y, 'X_val': train_x, 'y_val': train_y,} batch_size = train_x.shape[0] learning_rate = 0.002 reg = 0 model = layers_regression.muliti_layer_net(hidden_dim=[5,5], input_dim=2, num_classes=1, reg=reg, dtype=np.float64) solver = layers_regression.Solver(model, small_data, print_every=0, num_epochs=50000, batch_size=batch_size, weight_scale=1, update_rule='sgd_momentum', optim_config={'learning_rate': learning_rate}) print('Please wait several minutes!') solver.train() # print(model.params) best_model = model print('Train process is finised') import matplotlib.pyplot as plt # %matplotlib inline plt.plot(solver.loss_history, '.') plt.title('Training loss history') plt.xlabel('Iteration') plt.ylabel('Training loss') plt.show() # predict the training_data predict = best_model.loss(train_x) predict = np.round(predict * std_result + mean_result, 1) print('Predict is ') print('{}'.format(predict.reshape(4, 10))) # print('{}'.format(predict)) # observe the error between the predict after training with ground truth result = np.array([[0, 4.037, 7.148, 12.442, 18.547, 25.711, 34.773, 62.960, 73.363, 77.878], [0, 2.552, 4.725, 8.745, 14.436, 21.066, 29.509, 55.722, 65.976, 72.426], [0, 1.207, 2.252, 4.037, 7.148, 11.442, 17.136, 34.121, 48.016, 60.865], [0, 0.663, 1.207, 2.157, 3.601, 5.615, 8.251, 19.558, 33.847, 45.154]]) result = result.reshape(4, 10) predict = predict.reshape(4, 10) error = np.round(result - predict, 2) print('error between predict and real data') print(error) print('The absulate error in all data is %f' % np.sum(np.abs(error))) print('The mean error in all data is %f' % np.mean(np.abs(error))) # figure the predict map in 3D x_1 = (np.arange(0, 20, 0.1) - mean_QCT) / std_QCT x_2 = (np.arange(0, 200, 1) - mean_toxins) / std_toxins x_test = np.zeros((len(x_1)*len(x_2), 2)) index = 0 for i in range(len(x_1)): for j in range(len(x_2)): x_test[int(index), 0] = x_1[int(i)] x_test[int(index), 1] = x_2[int(j)] index += 1 test_pred = best_model.loss(x_test) predict = np.round(test_pred * std_result + mean_result, 3) from mpl_toolkits.mplot3d import Axes3D x_1, x_2 = np.meshgrid(x_1 * std_QCT + mean_QCT, x_2 * std_toxins + mean_toxins) figure = plt.figure() ax = Axes3D(figure) predict = predict.reshape(len(x_1), len(x_2)) ax.plot_surface(x_1, x_2, predict, rstride=1, cstride=1, cmap='rainbow') plt.show() # 最后本文将进行一些预测,但预测效果不是很好 # question 2: predict with given dose_QCT_predict = np.ravel(np.array([7.5, 15])) dose_QCT_predict_ = (dose_QCT_predict - mean_QCT)/ std_QCT dose_toxins_predict = np.array([0, 0.78125, 1.5625, 3.125, 6.25, 12.5, 25, 50, 100, 200]) dose_toxins_predict_ = (dose_toxins_predict - mean_toxins) / std_toxins test = [] for i,qct in enumerate(dose_QCT_predict): for j,toxin in enumerate(dose_toxins_predict): x = [qct, toxin] test.append(x) test = np.array(test) print('Please look at the test data:') print(test) test = [] for i,qct in enumerate(dose_QCT_predict_): for j,toxin in enumerate(dose_toxins_predict_): x = [qct, toxin] test.append(x) test = np.array(test) test_pred = best_model.loss(test) predict = np.round(test_pred * std_result + mean_result, 1) print(predict.reshape(2, 10))
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]