圆月山庄资源网 Design By www.vgjia.com

前言

首先我们做数据分析,想要得出最科学,最真实的结论,必须要有好的数据。而实际上我们一般面对的的都是复杂,多变的数据,所以必须要有强大的数据处理能力,接下来,我从我们面临的最真实的情况,一步一步教会大家怎么做。

1.数据的读取

 (1)读取模块
 Import pandas as pd 
 Import numpy as np
 (2)读取表格的全部数据
 df = pd.read_csv(".data/HR.csv")
 (3)读取你所需要的数据
 sl_s=df["sactisfaction_level"]

2. 数据的处理

2.1.异常值(空值)处理

2.1.1删除

首先,第一步是对空值的处理。

有两种,一种直接删除,另一种指代。

如果数据多,想简单一点,就直接删除,方法都很简单。

首先,建立一个DataFrame表
 1.为了确定是否含有空值:
 df.isnull() #如果含有空值,返回True
 2.删除
 df.dropna() #去掉含空值的行
 如果想要删除某一个属性含空值的行就加入subset参数
 df.dropna(subset=["B"]) #去掉B属性含空值的行
 判断是否有重复的数据:
 df.duplicated(["A"]) #A属性中重复的数据返回True
 删除A属性重复的行
 df.drop_duplicates(["A"])
 df.drop_duplicates(["A"],keep=False) #删除A属性全部重复的行
 df.drop_duplicates(["A"],keep=first) #删除A属性全部重复的行,保留第一个
 df.drop_duplicates(["A"],keep=last) #删除A属性全部重复的行,保留最后一个

2.1.2指代

有些数据非常重要,不能删除,那我们就选择指代,也就是替换

 #含空值的数据被替换为“b*”
 df.fillna("b*")
 #E属性中的含空值的数据被替换成该属性的平均值
 df.fillna(df["E"].mean())
 #插值替换
 如果含空值的元素为最后一个,那么空值的数据替换成和上一个数据一样
 如何含空值的元素为中间,那么空值的数据被(上+下)/2代替
 df["E"].interpolate() 
 #3次样条插值 order 参数就是几次样条插值
 df["E"].interpolate(method="spline",order=3) 

*函数

 (4)异常值分析(含有就返回True) --isnull()
 sl_s.isnull()
 主要表示没有空值
 (5)提取异常值的该属性信息 
 sl_s[sl_s.isnull()]
 (6)提取异常值的表格全部信息
 df[df["sactisfaction_level"].isnull()]
 (7)丢弃异常值 --dropna()
 sl_s=sl_s.dropna()
 注:删除为空的异常值
 可以利用where()把异常数据赋空,然后利用dropna()删除
 (8)填充异常值 --fillna()
 sl_s=sl_s.fillna()
 (9)平均值 --mean()
 sl_s.mean()
 (10)标准差 --std()
 Sl_s.std()
 (11)最大值 --max()
 sl_s.max()
 (12)最小值 --min()
 sl_s.min()
 (13)中位数 --median()
 sl_s.median()
 (14)下四分位数 --quantile(q=0.25)
 sl_s.quantile(q=0.25)
 (15)上四分位数 --quantile(q=0.75)
 sl_s.quantile(q=0.75)
 (16)偏度 --skew()
 sl_s.skew() 
 分析:小于0 是负偏 均值偏小,大部分数是比他的均值大的
 大于 0 稍微有些振偏 
 远大于0, 是极度振偏,均值要比他的大多数值大好多。
 (17)峰度 --kurt()
 sl_s.kurt()
 分析:<0 相比于正态分布,他的趋势相对平缓
 远大于0 说明他的形变是非常大的,所以是不靠谱的
 (18)获得离散化的分布(numpy模块) --histogram()
 np.histogram(sl_s.values,bins = np.arange(0.0,1.1,0.1))
 结果分析:
 [195,1214,532,974,…]
 [0.0,0.1,0.2,0.3,0.4…]
 代表0.0-0.1之间有195个数,0.1-0.2之间有1214个数,以此类推
 分布间隔为0.1

3.利用四分位数来去除异常值

 3.1.提取大于1的值
 le_s[le_s>1]
 3.2 去除大于1的异常值
 le_s[le_s<=1]
 3.3 提取正常值(利用四分位数)
 3.3.1 下四分位
 q_low=le_s.quantile(q =0.25)
 3.3.2 上四分位
 q_high=le_s.quantile(q=0.75)
 3.3.3 四分位间距
 q_interval=q_high-q_low
 3.3.4 定义k的值
 K=1.5~3之间
 如果k=1.5,删除的异常值是中度异常
 如果k=3.0,删除的异常值是极度异常
 3.3.5 筛选
 le_s=le_s[le_s<q_high+k*q_interval][le_s>q_low-k*q_interval]
 3.4 数据的个数 --len()
 len(le_s)
 3.5离散分布直方图(numpy模块)
 np.histogram(le_s.values,bins=np.arange(0.0,1.1,0.1))
 3.6回顾数据的平均值,标准差,中位数,最大值,最小值,偏度,峰度,确定数据的正常。

4.静态结构分析

 4.1每个值出现的次数 --values_counts()
 np_s.value_counts()
 4.2获取该数据的构成和比例(每个值的频率)
 np_s.value_counts(normalize=True)
 4.3 排序
 np_s.value_counts(normalize=True).sort_index()

5.数据分区间

 5.1把数据分成几份 --histogram() 
 np.histogram(amh_s.values,bins=10) 把数据分成10份
 5.2另一种方法 加了区间,计算区间的频数
 (左闭右开的区间)
 Np.histogram(amh_s.values,bins = np.arange(amh_s.min(),amh_s.max()+10,10))
 (左开右闭的区间)
 amh_s.value_counts(bins=np.arange (amh_s.min(),amh_s.max()+10,10)) 

6.英文异常值数据的处理

 6.1 首先,统计该数据的分布频数
 s_s.value_counts()
 6.2确定异常值的名字。
 6.3把异常值赋空(NaN) --where()
 s_s.where(s_s!="name")
 意思是把”name”的数据赋空
 6.4把赋空的异常值删除 --dropna()删除异常值
 s_s.where(s_s!="name").dropna()
 6.5 检查删除异常值的结果
 s_s.where(s_s!="name").dropna().value_counts()

7.对比分析

7.1对表格中空值的行删除
 Df = df.dropna(axis=0,how='any')
 axis =0 ,代表的是行删除
 how=‘any' 代表的是含有部分空值就执行行删除
 how=‘all' 代表的是一行全部是空值执行行删除
 7.2含有条件性的对异常值的删除
 df=df[df["last_evaluation"]<=1] [df["salary"]!="name"][df["department" ]!="sale"]
 7.3分组(比如:把同一部门的人分为一组) --groupby()
 df.groupby("department")
 7.4对分组后的组取均值
 df.groupby("department").mean()
 7.5 取部分数据(切片) --loc()
 df.loc[:,["last_evaluation","department"]] .groupby("department")
 7.6 取部分数据求平均
 df.loc[:,["last_evaluation","department"]] .groupby("department").mean()
 7.7 取部分数据求极差 --apply()
 df.loc[:,["average_monthly_hours" ,"department"]].groupby ("department")[ "average_monthly_hours"]. apply(lambda x:x.max()-x.min())

总结

以上所述是小编给大家介绍的python实现数据分析与建模 ,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

标签:
python数据建模,python,数据分析

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?