约定:
import pandas as pd import numpy as np from numpy import nan as NaN
滤除缺失数据
pandas的设计目标之一就是使得处理缺失数据的任务更加轻松些。pandas使用NaN作为缺失数据的标记。
使用dropna使得滤除缺失数据更加得心应手。
一、处理Series对象
通过**dropna()**滤除缺失数据:
se1=pd.Series([4,NaN,8,NaN,5]) print(se1) se1.dropna()
代码结果:
0 4.0
1 NaN
2 8.0
3 NaN
4 5.0
dtype: float640 4.0
2 8.0
4 5.0
dtype: float64
通过布尔序列也能滤除:
se1[se1.notnull()]
代码结果:
0 4.0
2 8.0
4 5.0
dtype: float64
二、处理DataFrame对象
处理DataFrame对象比较复杂,因为你可能需要丢弃所有的NaN或部分NaN。
df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]]) df1
代码结果:
0
1
2
默认滤除所有包含NaN:
df1.dropna()
代码结果:
0
1
2
传入**how=‘all'**滤除全为NaN的行:
df1.dropna(how='all')
代码结果:
0
1
2
传入axis=1滤除列:
df1[3]=NaN df1
代码结果:
0
1
2
3
df1.dropna(axis=1,how="all")
代码结果:
传入thresh=n保留至少有n个非NaN数据的行:
df1.dropna(thresh=1) df1.dropna(thresh=3)
代码结果:
0
1
2
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]