圆月山庄资源网 Design By www.vgjia.com
数据准备
假设我们目前有两个数据表:
① 一个数据表是关于三个人他们的id以及其他的几列属性信息
import pandas as pd import numpy as np data = pd.DataFrame(np.random.randint(low=1,high=20,size=(3,4))) data['id'] = range(1,4) # 输出:其中,最左边的0 1 2 为其索引
② 另外一个数据表是3个用户的app操作日志信息,一个人会有多条app操作记录
sample = pd.DataFrame(np.random.randint(low=1,high=9,size=(7,1)),columns=['hhh']) sample['id'] = [1,1,2,2,3,3,3] # 输出:
问题描述
① 首先我们需要统计每个用户app操作记录数,比如上表可以看出用户id为1的用户有2条操作记录,用户id为3的用户有3条操作记录
s = sample.groupby('id').count() # 输出:
② 此时,S是一个以id为索引,count出来的记录数为value的Series结构。因为考虑到后面我们需要id列进行merge,所以我们需要让id列从索引列变成真实的一列。
s = s.reset_index() # 输出:
③ 将S与最上的data表进行merge,我们不想要看到重复的id列,甚至我们也可以将问题延伸为S与data表不止是id列的重复,还有好多条其他的列的重复,那么如何保证将它们merge之后没有重复列呢?
解决方案
第一想法是用 DataFrame.drop(‘列名') 或者用 del DataFrame[‘列名']
但是如果用该方法,会删除掉所有的重复列,而达不到我们的要求。
办法是: 参考StackOverflow解答
cols_to_use = s.columns.difference(data.columns) # pandas版本在0.15及之上的都可以用这种方法,该方法找出S和data表的不同列,然后再进行merge pd.merge(data, s[cols_to_use], left_index=True, right_index=True, how='outer')
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com
暂无评论...
更新日志
2024年11月06日
2024年11月06日
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]