圆月山庄资源网 Design By www.vgjia.com

如下所示:

date 20170307 20170308 iphone4 2 0 iphone5 2 1 iphone6 0 1

先生成DF数据。

> df = pd.DataFrame.from_dict([['ip4','20170307',1],['ip4','20170307',1],['ip5','20170307',1],['ip5','20170307',1],['ip6','20170308',1],['ip5','20170308',1]])

> df.columns=['type','date','num']

>df
 type   date num
0 ip4 20170307  1
1 ip4 20170307  1
2 ip5 20170307  1
3 ip5 20170307  1
4 ip6 20170308  1
5 ip5 20170308  1
> pd.pivot_table(df,values='num',rows=['type'],cols=['date'],aggfunc=np.sum).fillna(0)

操作一下就是实现结果。

注:这个函数的参数形式在0.13.x版本里有效,其他版本请参考相应文档。

从0.14.0开始,参数形式升级成pd.pivot_table(df,values='num',index=['type'],columns=['date'],aggfunc=np.sum).fillna(0)

以上这篇pandas pivot_table() 按日期分多列数据的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
pandas,pivot_table,多列

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com