圆月山庄资源网 Design By www.vgjia.com

Dataframe使用loc取某几行几列的数据:

print(df.loc[0:4,['item_price_level','item_sales_level','item_collected_level','item_pv_level']])

结果如下,取了index为0到4的五行四列数据。

  item_price_level item_sales_level item_collected_level item_pv_level
0     3     3      4    14
1     3     3      4    14
2     3     3      4    14
3     3     3      4    14
4     3     3      4    14

而使用iloc,如下所示:

print(df.iloc[0:4,6:9])

结果如下,取得是index为0到3四行,以及第6到8列(从0列开始)3列数据。

  item_price_level item_sales_level item_collected_level
0     3     3      4
1     3     3      4
2     3     3      4
3     3     3      4

另外loc可以按条件取数据:

print(df.loc[df.item_price_level==0,:])
print(df.loc[df[item_price_level]==0,:])

上面两条语句效果是一样的,都是取item_price_level为0的所有数据。可以把冒号改成几列列名,只取满足条件的某几列数据:

print(df.loc[df['item_price_level']==0,['item_price_level','item_sales_level']])

结果前两行如下:

   item_price_level item_sales_level
129141     0    10
129142     0    10

条件为多个时 (同时满足两个条件如下):

print(df.loc[(item_price_level==0) & (item_sales_level==3),:])
 

以上这篇对pandas中iloc,loc取数据差别及按条件取值的方法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
pandas,iloc,loc

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com