产生此次实验的原因:当我使用pytorch进行神经网络的训练时,需要每次向CNN传入一组图像,并且这些图片的存放位置是在两个文件夹中:
A文件夹:图片1a,图片2a,图片3a……图片1000a
B文件夹:图片1b, 图片2b,图片3b……图片1000b
所以在每个循环里,我都希望能从A中取出图片Na,同时从B文件夹中取出对应的图片Nb。
测试一:通过pytorch官方文档中的dataloader搭配python中的迭代器iterator
dataset = dset.ImageFolder( root='./folder1', transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)), # bring images to (-1,1) ]) ) dataloader1 = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize, shuffle=True, num_workers=opt.workers) iterator1 = iter(dataloader1) for i in range(1,1001): data = iterator1.next() data2 = iterator2.next()
将两个dataloader当作数据集,然后分别调用迭代器iter(),然后在每次调用的时候使用next()来得到数据。
测试一下:将每次读入的图像输出,不对!发现图像并不是按照图像1,图像2,图像3......这样顺序读取的,而是很奇怪的顺序。所以为了要顺序读取数据,我们需要使用别的方法。
测试一的实验结果:此路不通!
from PIL import Image pathDir = os.listdir('./folder') #获取文件夹内所有文件的名称,生成数组 pathDir.sort() #对所有文件名进行排序 for allDir in pathDir: child = os.path.join('%s/%s' % ('./folder', allDir))#合成文件名 fopen = Image.open(child).convert('RGB') #通过PIL读取文件 transform_list = [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] transform = transforms.Compose(transform_list)#将PIL格式的文件转换成 tensor image = transform(fopen) #转换
测试二:首先得到文件夹下的所有文件名,将文件名数组做sort()排序,然后每次通过文件名读取图像。
输出每次读入的图片,发现每次排序不正确,它的排序方法是图片1,图片10,图片100……
与我们的期望不一样,所以这种方法也不对(可以重写sort函数来进行自定义的排序,这里不做深入探究)
测试二的实验结果:此路或许可通!
测试三:通过自己构造每次访问的文件名来访问
for i in range(1,1001): drain = irain.next() dnorain = iground.next() drain = os.path.join('%s/图像%s' % ('./rainy_img', i)) #跟上面一样,不过因为已经知道文件的取名顺序,所以拼出需要访问的文件名 fopen = Image.open(drain).convert('RGB') drain = transform(fopen) print(drain)
测试三的实验结果:此路畅通无阻!
以上这篇使用pytorch进行图像的顺序读取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
pytorch,图像,顺序读取
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]