本文实例讲述了Python机器学习k-近邻算法。分享给大家供大家参考,具体如下:
工作原理
存在一份训练样本集,并且每个样本都有属于自己的标签,即我们知道每个样本集中所属于的类别。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后提取样本集中与之最相近的k个样本。观察并统计这k个样本的标签,选择数量最大的标签作为这个新数据的标签。
用以下这幅图可以很好的解释kNN算法:
不同形状的点,为不同标签的点。其中绿色点为未知标签的数据点。现在要对绿色点进行预测。由图不难得出:
- 如果k=3,那么离绿色点最近的有2个红色三角形和1个蓝色的正方形,这3个点投票,于是绿色的这个待分类点属于红色的三角形。
- 如果k=5,那么离绿色点最近的有2个红色三角形和3个蓝色的正方形,这5个点投票,于是绿色的这个待分类点属于蓝色的正方形。
kNN算法实施
伪代码
对未知属性的数据集中的每个点执行以下操作
1. 计算已知类型类别数据集中的点与当前点之间的距离
2. 按照距离递增次序排序
3. 选取与当前点距离最小的k个点
4. 确定前k个点所在类别的出现频率
5. 返回前k个点出现频率最高的类别作为当前点的预测分类
欧式距离(计算两点之间的距离公式)
计算点x与点y之间欧式距离
python代码实现
# -*- coding:utf-8 -*- #! python2 import numpy as np import operator # 训练集 data_set = np.array([[1., 1.1], [1.0, 1.0], [0., 0.], [0, 0.1]]) labels = ['A', 'A', 'B', 'B'] def classify_knn(in_vector, training_data, training_label, k): """ :param in_vector: 待分类向量 :param training_data: 训练集向量 :param training_label: 训练集标签 :param k: 选择最近邻居的数目 :return: 分类器对 in_vector 分类的类别 """ data_size = training_data.shape[0] # .shape[0] 返回二维数组的行数 diff_mat = np.tile(in_vector, (data_size, 1)) - data_set # np.tile(array, (3, 2)) 对 array 进行 3×2 扩展为二维数组 sq_diff_mat = diff_mat ** 2 sq_distances = sq_diff_mat.sum(axis=1) # .sum(axis=1) 矩阵以列求和 # distances = sq_distances ** 0.5 # 主要是通过比较求最近点,所以没有必要求平方根 distances_sorted_index = sq_distances.argsort() # .argsort() 对array进行排序 返回排序后对应的索引 class_count_dict = {} # 用于统计类别的个数 for i in range(k): label = training_label[distances_sorted_index[i]] try: class_count_dict[label] += 1 except KeyError: class_count_dict[label] = 1 class_count_dict = sorted(class_count_dict.iteritems(), key=operator.itemgetter(1), reverse=True) # 根据字典的value值对字典进行逆序排序 return class_count_dict[0][0] if __name__ == '__main__': vector = [0, 0] # 待分类数据集 print classify_knn(in_vector=vector, training_data=data_set, training_label=labels, k=3)
运行结果:B
算法评价
- 优点:精度高、对异常值不敏感、无数据输入假定
- 缺点:计算复杂度高、空间复杂度高
- 使用数据范围:数据型和标称型
- 适用:kNN方法通常用于一个更复杂分类算法的一部分。例如,我们可以用它的估计值做为一个对象的特征。有时候,一个简单的kNN算法在良好选择的特征上会有很出色的表现。
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]