Tensorflow 提供了一种统一的格式来存储数据,这个格式就是TFRecord,上一篇文章中所提到的方法当数据的来源更复杂,每个样例中的信息更丰富的时候就很难有效的记录输入数据中的信息了,于是Tensorflow提供了TFRecord来统一存储数据,接下来我们就来介绍如何使用TFRecord来同意输入数据的格式。
1. TFRecord格式介绍
TFRecord文件中的数据是通过tf.train.Example Protocol Buffer的格式存储的,下面是tf.train.Example的定义
message Example { Features features = 1; }; message Features{ map<string,Feature> featrue = 1; }; message Feature{ oneof kind{ BytesList bytes_list = 1; FloatList float_list = 2; Int64List int64_list = 3; } };
从上述代码可以看到,ft.train.Example 的数据结构相对简洁。tf.train.Example中包含了一个从属性名称到取值的字典,其中属性名称为一个字符串,属性的取值可以为字符串(BytesList ),实数列表(FloatList )或整数列表(Int64List )。例如我们可以将解码前的图片作为字符串,图像对应的类别标号作为整数列表。
2. 将自己的数据转化为TFRecord格式
准备数据
在上一篇中,我们为了像伟大的MNIST致敬,所以选择图像的前缀来进行不同类别的分类依据,但是大多数的情况下,在进行分类任务的过程中,不同的类别都会放在不同的文件夹下,而且类别的个数往往浮动性又很大,所以针对这样的情况,我们现在利用不同类别在不同文件夹中的图像来生成TFRecord.
我们在Iris&Contact这个文件夹下有两个文件夹,分别为iris,contact。对于每个文件夹中存放的是对应的图片
转换数据
数据准备好以后,就开始准备生成TFRecord,具体代码如下:
import os import tensorflow as tf from PIL import Image import matplotlib.pyplot as plt cwd='/home/ruyiwei/Documents/Iris&Contact/' classes={'iris','contact'} writer= tf.python_io.TFRecordWriter("iris_contact.tfrecords") for index,name in enumerate(classes): class_path=cwd+name+'/' for img_name in os.listdir(class_path): img_path=class_path+img_name img=Image.open(img_path) img= img.resize((512,80)) img_raw=img.tobytes() #plt.imshow(img) # if you want to check you image,please delete '#' #plt.show() example = tf.train.Example(features=tf.train.Features(feature={ "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])), 'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])) })) writer.write(example.SerializeToString()) writer.close()
3. Tensorflow从TFRecord中读取数据
def read_and_decode(filename): # read iris_contact.tfrecords filename_queue = tf.train.string_input_producer([filename])# create a queue reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue)#return file_name and file features = tf.parse_single_example(serialized_example, features={ 'label': tf.FixedLenFeature([], tf.int64), 'img_raw' : tf.FixedLenFeature([], tf.string), })#return image and label img = tf.decode_raw(features['img_raw'], tf.uint8) img = tf.reshape(img, [512, 80, 3]) #reshape image to 512*80*3 img = tf.cast(img, tf.float32) * (1. / 255) - 0.5 #throw img tensor label = tf.cast(features['label'], tf.int32) #throw label tensor return img, label
4. 将TFRecord中的数据保存为图片
filename_queue = tf.train.string_input_producer(["iris_contact.tfrecords"]) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) #return file and file_name features = tf.parse_single_example(serialized_example, features={ 'label': tf.FixedLenFeature([], tf.int64), 'img_raw' : tf.FixedLenFeature([], tf.string), }) image = tf.decode_raw(features['img_raw'], tf.uint8) image = tf.reshape(image, [512, 80, 3]) label = tf.cast(features['label'], tf.int32) with tf.Session() as sess: init_op = tf.initialize_all_variables() sess.run(init_op) coord=tf.train.Coordinator() threads= tf.train.start_queue_runners(coord=coord) for i in range(20): example, l = sess.run([image,label])#take out image and label img=Image.fromarray(example, 'RGB') img.save(cwd+str(i)+'_''Label_'+str(l)+'.jpg')#save image print(example, l) coord.request_stop() coord.join(threads)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]