滑动平均会为目标变量维护一个影子变量,影子变量不影响原变量的更新维护,但是在测试或者实际预测过程中(非训练时),使用影子变量代替原变量。
1、滑动平均求解对象初始化
ema = tf.train.ExponentialMovingAverage(decay,num_updates)
参数decay
`shadow_variable = decay * shadow_variable + (1 - decay) * variable`
参数num_updates
`min(decay, (1 + num_updates) / (10 + num_updates))`
2、添加/更新变量
添加目标变量,为之维护影子变量
注意维护不是自动的,需要每轮训练中运行此句,所以一般都会使用tf.control_dependencies使之和train_op绑定,以至于每次train_op都会更新影子变量
ema.apply([var0, var1])
3、获取影子变量值
这一步不需要定义图中,从影子变量集合中提取目标值
sess.run(ema.average([var0, var1]))
4、保存&载入影子变量
我们知道,在TensorFlow中,变量的滑动平均值都是由影子变量所维护的,如果你想要获取变量的滑动平均值需要获取的是影子变量而不是变量本身。
保存影子变量
建立tf.train.ExponentialMovingAverage对象后,Saver正常保存就会存入影子变量,命名规则是"v/ExponentialMovingAverage"对应变量”v“
import tensorflow as tf if __name__ == "__main__": v = tf.Variable(0.,name="v") #设置滑动平均模型的系数 ema = tf.train.ExponentialMovingAverage(0.99) #设置变量v使用滑动平均模型,tf.all_variables()设置所有变量 op = ema.apply([v]) #获取变量v的名字 print(v.name) #v:0 #创建一个保存模型的对象 save = tf.train.Saver() sess = tf.Session() #初始化所有变量 init = tf.initialize_all_variables() sess.run(init) #给变量v重新赋值 sess.run(tf.assign(v,10)) #应用平均滑动设置 sess.run(op) #保存模型文件 save.save(sess,"./model.ckpt") #输出变量v之前的值和使用滑动平均模型之后的值 print(sess.run([v,ema.average(v)])) #[10.0, 0.099999905]
载入影子变量并映射到变量
利用了Saver载入模型的变量名映射功能,实际上对所有的变量都可以如此操作『TensorFlow』模型载入方法汇总
v = tf.Variable(1.,name="v") #定义模型对象 saver = tf.train.Saver({"v/ExponentialMovingAverage":v}) sess = tf.Session() saver.restore(sess,"./model.ckpt") print(sess.run(v)) #0.0999999
这里特别需要注意的一个地方就是,在使用tf.train.Saver函数中,所传递的模型参数是{"v/ExponentialMovingAverage":v}而不是{"v":v},如果你使用的是后面的参数,那么你得到的结果将是10而不是0.09,那是因为后者获取的是变量本身而不是影子变量。
使用这种方式来读取模型文件的时候,还需要输入一大串的变量名称。
variables_to_restore函数的使用
v = tf.Variable(1.,name="v") #滑动模型的参数的大小并不会影响v的值 ema = tf.train.ExponentialMovingAverage(0.99) print(ema.variables_to_restore()) #{'v/ExponentialMovingAverage': <tf.Variable 'v:0' shape=() dtype=float32_ref>} sess = tf.Session() saver = tf.train.Saver(ema.variables_to_restore()) saver.restore(sess,"./model.ckpt") print(sess.run(v)) #0.0999999
variables_to_restore会识别网络中的变量,并自动生成影子变量名。
通过使用variables_to_restore函数,可以使在加载模型的时候将影子变量直接映射到变量的本身,所以我们在获取变量的滑动平均值的时候只需要获取到变量的本身值而不需要去获取影子变量。
5、官方文档例子
官方文档中将每次apply更新就会自动训练一边模型,实际上可以反过来两者关系,《tf实战google》P128中有示例
| Example usage when creating a training model: | | ```python | # Create variables. | var0 = tf.Variable(...) | var1 = tf.Variable(...) | # ... use the variables to build a training model... | ... | # Create an op that applies the optimizer. This is what we usually | # would use as a training op. | opt_op = opt.minimize(my_loss, [var0, var1]) | | # Create an ExponentialMovingAverage object | ema = tf.train.ExponentialMovingAverage(decay=0.9999) | | with tf.control_dependencies([opt_op]): | # Create the shadow variables, and add ops to maintain moving averages | # of var0 and var1. This also creates an op that will update the moving | # averages after each training step. This is what we will use in place | # of the usual training op. | training_op = ema.apply([var0, var1]) | | ...train the model by running training_op... | ```
6、batch_normal的例子
和上面不太一样的是,batch_normal中不太容易绑定到train_op(位于函数体外面),则强行将两个variable的输出过程化为节点,绑定给参数更新步骤
def batch_norm(x,beta,gamma,phase_train,scope='bn',decay=0.9,eps=1e-5): with tf.variable_scope(scope): # beta = tf.get_variable(name='beta', shape=[n_out], initializer=tf.constant_initializer(0.0), trainable=True) # gamma = tf.get_variable(name='gamma', shape=[n_out], # initializer=tf.random_normal_initializer(1.0, stddev), trainable=True) batch_mean,batch_var = tf.nn.moments(x,[0,1,2],name='moments') ema = tf.train.ExponentialMovingAverage(decay=decay) def mean_var_with_update(): ema_apply_op = ema.apply([batch_mean,batch_var]) with tf.control_dependencies([ema_apply_op]): return tf.identity(batch_mean),tf.identity(batch_var) # identity之后会把Variable转换为Tensor并入图中, # 否则由于Variable是独立于Session的,不会被图控制control_dependencies限制 mean,var = tf.cond(phase_train, mean_var_with_update, lambda: (ema.average(batch_mean),ema.average(batch_var))) normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, eps) return normed
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
TensorFlow,滑动平均
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]