环境
系统:win10
cpu:i7-6700HQ
gpu:gtx965m
python : 3.6
pytorch :0.3
数据下载
来源自Sasank Chilamkurthy 的教程; 数据:下载链接。
下载后解压放到项目根目录:
数据集为用来分类 蚂蚁和蜜蜂。有大约120个训练图像,每个类有75个验证图像。
数据导入
可以使用 torchvision.datasets.ImageFolder(root,transforms) 模块 可以将 图片转换为 tensor。
先定义transform:
ata_transforms = { 'train': transforms.Compose([ # 随机切成224x224 大小图片 统一图片格式 transforms.RandomResizedCrop(224), # 图像翻转 transforms.RandomHorizontalFlip(), # totensor 归一化(0,255) (0,1) normalize channel=(channel-mean)/std transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]), "val" : transforms.Compose([ # 图片大小缩放 统一图片格式 transforms.Resize(256), # 以中心裁剪 transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) }
导入,加载数据:
data_dir = './hymenoptera_data' # trans data image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']} # load data data_loaders = {x: DataLoader(image_datasets[x], batch_size=BATCH_SIZE, shuffle=True) for x in ['train', 'val']} data_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']} class_names = image_datasets['train'].classes print(data_sizes, class_names)
{'train': 244, 'val': 153} ['ants', 'bees']
训练集 244图片 , 测试集153图片 。
可视化部分图片看看,由于visdom支持tensor输入 ,不用换成numpy,直接用tensor计算即可 :
inputs, classes = next(iter(data_loaders['val'])) out = torchvision.utils.make_grid(inputs) inp = torch.transpose(out, 0, 2) mean = torch.FloatTensor([0.485, 0.456, 0.406]) std = torch.FloatTensor([0.229, 0.224, 0.225]) inp = std * inp + mean inp = torch.transpose(inp, 0, 2) viz.images(inp)
创建CNN
net 根据上一篇的处理cifar10的改了一下规格:
class CNN(nn.Module): def __init__(self, in_dim, n_class): super(CNN, self).__init__() self.cnn = nn.Sequential( nn.BatchNorm2d(in_dim), nn.ReLU(True), nn.Conv2d(in_dim, 16, 7), # 224 218 nn.BatchNorm2d(16), nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), # 218 109 nn.ReLU(True), nn.Conv2d(16, 32, 5), # 105 nn.BatchNorm2d(32), nn.ReLU(True), nn.Conv2d(32, 64, 5), # 101 nn.BatchNorm2d(64), nn.ReLU(True), nn.Conv2d(64, 64, 3, 1, 1), nn.BatchNorm2d(64), nn.ReLU(True), nn.MaxPool2d(2, 2), # 101 50 nn.Conv2d(64, 128, 3, 1, 1), # nn.BatchNorm2d(128), nn.ReLU(True), nn.MaxPool2d(3), # 50 16 ) self.fc = nn.Sequential( nn.Linear(128*16*16, 120), nn.BatchNorm1d(120), nn.ReLU(True), nn.Linear(120, n_class)) def forward(self, x): out = self.cnn(x) out = self.fc(out.view(-1, 128*16*16)) return out # 输入3层rgb ,输出 分类 2 model = CNN(3, 2)
loss,优化函数:
line = viz.line(Y=np.arange(10)) loss_f = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=LR, momentum=0.9) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
参数:
BATCH_SIZE = 4 LR = 0.001 EPOCHS = 10
运行 10个 epoch 看看:
[9/10] train_loss:0.650|train_acc:0.639|test_loss:0.621|test_acc0.706
[10/10] train_loss:0.645|train_acc:0.627|test_loss:0.654|test_acc0.686
Training complete in 1m 16s
Best val Acc: 0.712418
运行 20个看看:
[19/20] train_loss:0.592|train_acc:0.701|test_loss:0.563|test_acc0.712
[20/20] train_loss:0.564|train_acc:0.721|test_loss:0.571|test_acc0.706
Training complete in 2m 30s
Best val Acc: 0.745098
准确率比较低:只有74.5%
我们使用models 里的 resnet18 运行 10个epoch:
model = torchvision.models.resnet18(True) num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, 2)
[9/10] train_loss:0.621|train_acc:0.652|test_loss:0.588|test_acc0.667
[10/10] train_loss:0.610|train_acc:0.680|test_loss:0.561|test_acc0.667
Training complete in 1m 24s
Best val Acc: 0.686275
效果也很一般,想要短时间内就训练出效果很好的models,我们可以下载训练好的state,在此基础上训练:
model = torchvision.models.resnet18(pretrained=True) num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, 2)
[9/10] train_loss:0.308|train_acc:0.877|test_loss:0.160|test_acc0.941
[10/10] train_loss:0.267|train_acc:0.885|test_loss:0.148|test_acc0.954
Training complete in 1m 25s
Best val Acc: 0.954248
10个epoch直接的到95%的准确率。
示例代码:https://github.com/ffzs/ml_pytorch/blob/master/ml_pytorch_hymenoptera
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]