圆月山庄资源网 Design By www.vgjia.com

基于Python实现对求解最长回文子串的动态规划算法,具体内容如下

1、题目

给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为1000。

示例 1:

输入: "babad"
输出: "bab"

注意: "aba"也是一个有效答案。

示例 2:

输入: "cbbd"
输出: "bb"

2、求解

对于暴力求解在这里就不再骜述了,着重介绍如何利用动态规划算法进行求解。

关于动态规划的含义及用法,请参考链接,这篇文章通过漫画的形式对动态规划算法进行了详细而又有风趣的介绍。值得一看。

2.1 算法一

利用常规动态规划算法,即利用表来存储每一中回文子串的可能。

基于动态规划的三要素对问题进行分析,可确定以下的状态转换方程:

python实现对求解最长回文子串的动态规划算法

其中f(i,j)表示当s[i:j]子串是否是回文串。当j-i<=1时,如果s[i] == s[j]则表示s[i:j]为回文串,及f(i,j) = true,否则f(i,j) = false。当j-i > 1时,则判断 s[i]、s[j]是否相等以及f(i+1, j-1)是否为true,即s[i+1:j-1]是否为回文串,如果为真,则f(i,j) = true

所以就需要一个n*n的二维矩阵用于存储f(i,j)的值,其中 j in range(0, k),i in range(0, j+1),之所以是j+1是因为i可以等于j。

python3代码如下:

 k = len(s) # 计算字符串的长度 
 matrix = [[0 for i in range(k)] for i in range(k)] # 初始化n*n的列表 
 logestSubStr = "" # 存储最长回文子串 
 logestLen = 0 # 最长回文子串的长度 
 
  for j in range(0, k): 
   for i in range(0, j+1): 
    if j - i <= 1: 
     if s[i] == s[j]: 
      matrix[i][j] = 1   # 此时f(i,j)置为true 
      if logestLen < j - i + 1: # 将s[i:j]的长度与当前的回文子串的最长长度相比 
       logestSubStr = s[i:j+1] # 取当前的最长回文子串 
       logestLen = j - i + 1 # 当前最长回文子串的长度 
    else: 
     if s[i] == s[j] and matrix[i+1][j-1]: # 判断 
      matrix[i][j] = 1 
      if logestLen < j - i + 1: 
       logestSubStr = s[i:j+1] 
       logestLen = j - i + 1 
  return logestSubStr 

 采用当前算法,时间复杂度为O(n*n),空间复杂度为O(n*n),算法平均耗时大概5~7s

下面介绍空间复杂度为O(n)的算法。

2.2 算法二

算法二是由算法一改良而来,观察算法一的执行流程如下:

python实现对求解最长回文子串的动态规划算法

当j>1时,判断f(i,j)是否为回文子串的操作只与j-1时的的操作相关,即f(i,j) = g(f(i, j-1)),其中j>1,i in range(0, j+1),所以接下来就变成求解g()函数了。   

用nlist存储j情况下所有的子串是否为回文子串的标志

用olist存储j-1情况下所有的子串是否为回文子串的标志

那么olist与nlist的关系是什么呢?

python实现对求解最长回文子串的动态规划算法

有上图可知,nlist[i] = g(olist[i+1])

新的算法如下:

k = len(s) 
 olist = [0] * k # 申请长度为n的列表,并初始化 
nList = [0] * k # 同上 
logestSubStr = "" 
 logestLen = 0 
 
  for j in range(0, k): 
   for i in range(0, j + 1): 
    if j - i <= 1: 
     if s[i] == s[j]: 
      nList[i] = 1 # 当 j 时,第 i 个子串为回文子串 
      len_t = j - i + 1 
      if logestLen < len_t: # 判断长度 
       logestSubStr = s[i:j + 1] 
       logestLen = len_t 
    else: 
     if s[i] == s[j] and olist[i+1]: # 当j-i>1时,判断s[i]是否等于s[j],并判断当j-1时,第i+1个子串是否为回文子串 
      nList[i] = 1 # 当 j 时,第 i 个子串为回文子串 
      len_t = j - i + 1 
      if logestLen < len_t: 
       logestSubStr = s[i:j + 1] 
       logestLen = len_t 
   olist = nList  # 覆盖旧的列表 
   nList = [0] * k # 新的列表清空 
  return logestSubStr 

 这样新算法的空间复杂度就为O(2n),即O(n)。算法平均耗时3s左右,而且该算法更符合动态规划的原理。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
python,最长回文子串

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。