pandas获取groupby分组里最大值所在的行方法
如下面这个DataFrame,按照Mt分组,取出Count最大的那行
import pandas as pd df = pd.DataFrame({'Sp':['a','b','c','d','e','f'], 'Mt':['s1', 's1', 's2','s2','s2','s3'], 'Value':[1,2,3,4,5,6], 'Count':[3,2,5,10,10,6]}) df
Count
Mt
Sp
Value
方法1:在分组中过滤出Count最大的行
df.groupby('Mt').apply(lambda t: t[t.Count==t.Count.max()])
Count
Mt
Sp
Value
Mt
方法2:用transform获取原dataframe的index,然后过滤出需要的行
print df.groupby(['Mt'])['Count'].agg(max) idx=df.groupby(['Mt'])['Count'].transform(max) print idx idx1 = idx == df['Count'] print idx1 df[idx1]
Mt s1 3 s2 10 s3 6 Name: Count, dtype: int64 0 3 1 3 2 10 3 10 4 10 5 6 dtype: int64 0 True 1 False 2 False 3 True 4 True 5 True dtype: bool
Count
Mt
Sp
Value
上面的方法都有个问题是3、4行的值都是最大值,这样返回了多行,如果只要返回一行呢?
方法3:idmax(旧版本pandas是argmax)
idx = df.groupby('Mt')['Count'].idxmax() print idx
df.iloc[idx] Mt s1 0 s2 3 s3 5 Name: Count, dtype: int64
Count
Mt
Sp
Value
df.iloc[df.groupby(['Mt']).apply(lambda x: x['Count'].idxmax())]
Count
Mt
Sp
Value
def using_apply(df): return (df.groupby('Mt').apply(lambda subf: subf['Value'][subf['Count'].idxmax()])) def using_idxmax_loc(df): idx = df.groupby('Mt')['Count'].idxmax() return df.loc[idx, ['Mt', 'Value']] print using_apply(df) using_idxmax_loc(df)
Mt s1 1 s2 4 s3 6 dtype: int64
Mt
Value
方法4:先排好序,然后每组取第一个
df.sort('Count', ascending=False).groupby('Mt', as_index=False).first()
Mt
Count
Sp
Value
那问题又来了,如果不是要取出最大值所在的行,比如要中间值所在的那行呢?
思路还是类似,可能具体写法上要做一些修改,比如方法1和2要修改max算法,方法3要自己实现一个返回index的方法。 不管怎样,groupby之后,每个分组都是一个dataframe。
以上这篇pandas获取groupby分组里最大值所在的行方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
pandas,行最大值
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]