本文实例为大家分享了用简单的神经网络来训练和测试的具体代码,供大家参考,具体内容如下
刚开始学习tf时,我们从简单的地方开始。卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始。
神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输出层。
数据从输入层输入,在隐藏层进行加权变换,最后在输出层进行输出。输出的时候,我们可以使用softmax回归,输出属于每个类别的概率值。借用极客学院的图表示如下:
其中,x1,x2,x3为输入数据,经过运算后,得到三个数据属于某个类别的概率值y1,y2,y3. 用简单的公式表示如下:
在训练过程中,我们将真实的结果和预测的结果相比(交叉熵比较法),会得到一个残差。公式如下:
y是我们预测的概率值,y'是实际的值。这个残差越小越好,我们可以使用梯度下降法,不停地改变W和b的值,使得残差逐渐变小,最后收敛到最小值。这样训练就完成了,我们就得到了一个模型(W和b的最优化值)。
完整代码如下:
import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) x = tf.placeholder(tf.float32, [None, 784]) y_actual = tf.placeholder(tf.float32, shape=[None, 10]) W = tf.Variable(tf.zeros([784,10])) #初始化权值W b = tf.Variable(tf.zeros([10])) #初始化偏置项b y_predict = tf.nn.softmax(tf.matmul(x,W) + b) #加权变换并进行softmax回归,得到预测概率 cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_actual*tf.log(y_predict),reduction_indies=1)) #求交叉熵 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) #用梯度下降法使得残差最小 correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1)) #在测试阶段,测试准确度计算 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #多个批次的准确度均值 init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) for i in range(1000): #训练阶段,迭代1000次 batch_xs, batch_ys = mnist.train.next_batch(100) #按批次训练,每批100行数据 sess.run(train_step, feed_dict={x: batch_xs, y_actual: batch_ys}) #执行训练 if(i%100==0): #每训练100次,测试一次 print "accuracy:",sess.run(accuracy, feed_dict={x: mnist.test.images, y_actual: mnist.test.labels})
每训练100次,测试一次,随着训练次数的增加,测试精度也在增加。训练结束后,1W行数据测试的平均精度为91%左右,不是太高,肯定没有CNN高。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
tensorflow,神经网络
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]