圆月山庄资源网 Design By www.vgjia.com

python实现简单神经网络算法,供大家参考,具体内容如下

python实现二层神经网络

包括输入层和输出层

import numpy as np 
 
#sigmoid function 
def nonlin(x, deriv = False): 
  if(deriv == True): 
    return x*(1-x) 
  return 1/(1+np.exp(-x)) 
 
#input dataset 
x = np.array([[0,0,1], 
       [0,1,1], 
       [1,0,1], 
       [1,1,1]]) 
 
#output dataset 
y = np.array([[0,0,1,1]]).T 
 
np.random.seed(1) 
 
#init weight value 
syn0 = 2*np.random.random((3,1))-1 
 
for iter in xrange(100000): 
  l0 = x             #the first layer,and the input layer  
  l1 = nonlin(np.dot(l0,syn0))  #the second layer,and the output layer 
 
 
  l1_error = y-l1 
 
  l1_delta = l1_error*nonlin(l1,True) 
 
  syn0 += np.dot(l0.T, l1_delta) 
print "outout after Training:" 
print l1 
import numpy as np 
 
#sigmoid function 
def nonlin(x, deriv = False): 
  if(deriv == True): 
    return x*(1-x) 
  return 1/(1+np.exp(-x)) 
 
#input dataset 
x = np.array([[0,0,1], 
       [0,1,1], 
       [1,0,1], 
       [1,1,1]]) 
 
#output dataset 
y = np.array([[0,0,1,1]]).T 
 
np.random.seed(1) 
 
#init weight value 
syn0 = 2*np.random.random((3,1))-1 
 
for iter in xrange(100000): 
  l0 = x             #the first layer,and the input layer  
  l1 = nonlin(np.dot(l0,syn0))  #the second layer,and the output layer 
 
 
  l1_error = y-l1 
 
  l1_delta = l1_error*nonlin(l1,True) 
 
  syn0 += np.dot(l0.T, l1_delta) 
print "outout after Training:" 
print l1 

这里,
l0:输入层

l1:输出层

syn0:初始权值

l1_error:误差

l1_delta:误差校正系数

func nonlin:sigmoid函数

python实现简单神经网络算法

可见迭代次数越多,预测结果越接近理想值,当时耗时也越长。

python实现三层神经网络

包括输入层、隐含层和输出层

import numpy as np 
 
def nonlin(x, deriv = False): 
  if(deriv == True): 
    return x*(1-x) 
  else: 
    return 1/(1+np.exp(-x)) 
 
#input dataset 
X = np.array([[0,0,1], 
       [0,1,1], 
       [1,0,1], 
       [1,1,1]]) 
 
#output dataset 
y = np.array([[0,1,1,0]]).T 
 
syn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight value 
syn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight value 
 
for j in range(60000): 
  l0 = X            #the first layer,and the input layer  
  l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer 
  l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer 
 
 
  l2_error = y-l2    #the hidden-output layer error 
 
  if(j%10000) == 0: 
    print "Error:"+str(np.mean(l2_error)) 
 
  l2_delta = l2_error*nonlin(l2,deriv = True) 
 
  l1_error = l2_delta.dot(syn1.T)   #the first-hidden layer error 
 
  l1_delta = l1_error*nonlin(l1,deriv = True) 
 
  syn1 += l1.T.dot(l2_delta) 
  syn0 += l0.T.dot(l1_delta) 
print "outout after Training:" 
print l2 
import numpy as np 
 
def nonlin(x, deriv = False): 
  if(deriv == True): 
    return x*(1-x) 
  else: 
    return 1/(1+np.exp(-x)) 
 
#input dataset 
X = np.array([[0,0,1], 
       [0,1,1], 
       [1,0,1], 
       [1,1,1]]) 
 
#output dataset 
y = np.array([[0,1,1,0]]).T 
 
syn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight value 
syn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight value 
 
for j in range(60000): 
  l0 = X            #the first layer,and the input layer  
  l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer 
  l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer 
 
 
  l2_error = y-l2    #the hidden-output layer error 
 
  if(j%10000) == 0: 
    print "Error:"+str(np.mean(l2_error)) 
 
  l2_delta = l2_error*nonlin(l2,deriv = True) 
 
  l1_error = l2_delta.dot(syn1.T)   #the first-hidden layer error 
 
  l1_delta = l1_error*nonlin(l1,deriv = True) 
 
  syn1 += l1.T.dot(l2_delta) 
  syn0 += l0.T.dot(l1_delta) 
print "outout after Training:" 
print l2 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
python,神经网络

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。