圆月山庄资源网 Design By www.vgjia.com
TensorFLow能够识别的图像文件,可以通过numpy,使用tf.Variable或者tf.placeholder加载进tensorflow;也可以通过自带函数(tf.read)读取,当图像文件过多时,一般使用pipeline通过队列的方法进行读取。下面我们介绍两种生成tensorflow的图像格式的方法,供给tensorflow的graph的输入与输出。
import cv2 import numpy as np import h5py height = 460 width = 345 with h5py.File('make3d_dataset_f460.mat','r') as f: images = f['images'][:] image_num = len(images) data = np.zeros((image_num, height, width, 3), np.uint8) data = images.transpose((0,3,2,1))
先生成图像文件的路径:ls *.jpg> list.txt
import cv2 import numpy as np image_path = './' list_file = 'list.txt' height = 48 width = 48 image_name_list = [] # read image with open(image_path + list_file) as fid: image_name_list = [x.strip() for x in fid.readlines()] image_num = len(image_name_list) data = np.zeros((image_num, height, width, 3), np.uint8) for idx in range(image_num): img = cv2.imread(image_name_list[idx]) img = cv2.resize(img, (height, width)) data[idx, :, :, :] = img
2 Tensorflow自带函数读取
def get_image(image_path): """Reads the jpg image from image_path. Returns the image as a tf.float32 tensor Args: image_path: tf.string tensor Reuturn: the decoded jpeg image casted to float32 """ return tf.image.convert_image_dtype( tf.image.decode_jpeg( tf.read_file(image_path), channels=3), dtype=tf.uint8)
pipeline读取方法
# Example on how to use the tensorflow input pipelines. The explanation can be found here ischlag.github.io. import tensorflow as tf import random from tensorflow.python.framework import ops from tensorflow.python.framework import dtypes dataset_path = "/path/to/your/dataset/mnist/" test_labels_file = "test-labels.csv" train_labels_file = "train-labels.csv" test_set_size = 5 IMAGE_HEIGHT = 28 IMAGE_WIDTH = 28 NUM_CHANNELS = 3 BATCH_SIZE = 5 def encode_label(label): return int(label) def read_label_file(file): f = open(file, "r") filepaths = [] labels = [] for line in f: filepath, label = line.split(",") filepaths.append(filepath) labels.append(encode_label(label)) return filepaths, labels # reading labels and file path train_filepaths, train_labels = read_label_file(dataset_path + train_labels_file) test_filepaths, test_labels = read_label_file(dataset_path + test_labels_file) # transform relative path into full path train_filepaths = [ dataset_path + fp for fp in train_filepaths] test_filepaths = [ dataset_path + fp for fp in test_filepaths] # for this example we will create or own test partition all_filepaths = train_filepaths + test_filepaths all_labels = train_labels + test_labels all_filepaths = all_filepaths[:20] all_labels = all_labels[:20] # convert string into tensors all_images = ops.convert_to_tensor(all_filepaths, dtype=dtypes.string) all_labels = ops.convert_to_tensor(all_labels, dtype=dtypes.int32) # create a partition vector partitions = [0] * len(all_filepaths) partitions[:test_set_size] = [1] * test_set_size random.shuffle(partitions) # partition our data into a test and train set according to our partition vector train_images, test_images = tf.dynamic_partition(all_images, partitions, 2) train_labels, test_labels = tf.dynamic_partition(all_labels, partitions, 2) # create input queues train_input_queue = tf.train.slice_input_producer( [train_images, train_labels], shuffle=False) test_input_queue = tf.train.slice_input_producer( [test_images, test_labels], shuffle=False) # process path and string tensor into an image and a label file_content = tf.read_file(train_input_queue[0]) train_image = tf.image.decode_jpeg(file_content, channels=NUM_CHANNELS) train_label = train_input_queue[1] file_content = tf.read_file(test_input_queue[0]) test_image = tf.image.decode_jpeg(file_content, channels=NUM_CHANNELS) test_label = test_input_queue[1] # define tensor shape train_image.set_shape([IMAGE_HEIGHT, IMAGE_WIDTH, NUM_CHANNELS]) test_image.set_shape([IMAGE_HEIGHT, IMAGE_WIDTH, NUM_CHANNELS]) # collect batches of images before processing train_image_batch, train_label_batch = tf.train.batch( [train_image, train_label], batch_size=BATCH_SIZE #,num_threads=1 ) test_image_batch, test_label_batch = tf.train.batch( [test_image, test_label], batch_size=BATCH_SIZE #,num_threads=1 ) print "input pipeline ready" with tf.Session() as sess: # initialize the variables sess.run(tf.initialize_all_variables()) # initialize the queue threads to start to shovel data coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) print "from the train set:" for i in range(20): print sess.run(train_label_batch) print "from the test set:" for i in range(10): print sess.run(test_label_batch) # stop our queue threads and properly close the session coord.request_stop() coord.join(threads) sess.close()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com
暂无评论...
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
2024年11月07日
2024年11月07日
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]