运动物体检测一般分为背景建模和运动物体分析两步。即构建不包含运动物体的背景模型。然后将新的视频帧和背景模型对比,找出其中的运动物体。目前比较好的背景建模算法有两种:1)文章(Zivkovic Z. (2004) Improved adaptive Gausianmixture model for backgroundsubtraction, Proceedings of ICPR 2004, August 23-26, Cambridge, UK.)提出的高斯混合模型法。在此算法中,背景的每一个像素都被拟合到一个高斯混合模型。对于新的图片,只需要判断每个像素是否服从这个高斯混合模型就可以判断出这个像素是背景还是前景。但混合高斯算法的缺点是计算量相对比较大,速度偏慢,对光照敏感。2)文章(ViBe: A universal backgroundsubtraction algorithm for video sequences.)提出的ViBe算法。该算法速度非常快,计算量比较小,而且对噪声有一定的鲁棒性,检测效果不错。
由于最近在做一些跟踪检查的研究,就用到了ViBe算法,根据网上的c++版本编写了这个python版的算法,在这分享给大家。
class ViBe: ''''' classdocs ''' __defaultNbSamples = 20 #每个像素点的样本个数 __defaultReqMatches = 2 #min指数 __defaultRadius = 20; #Sqthere半径 __defaultSubsamplingFactor = 16#子采样概率 __BG = 0 #背景像素 __FG = 255 #前景像素 __c_xoff=[-1,0,1,-1,1,-1,0,1,0] #x的邻居点 len=9 __c_yoff=[-1,0,1,-1,1,-1,0,1,0] #y的邻居点 len=9 __samples=[] #保存每个像素点的样本值,len defaultNbSamples+1 __Height = 0 __Width = 0 def __init__(self, grayFrame): ''''' Constructor ''' self.__Height = grayFrame.shape[0] self.__Width = grayFrame.shape[1] for i in range(self.__defaultNbSamples+1): self.__samples.insert(i,np.zeros((grayFrame.shape[0],grayFrame.shape[1]),dtype=grayFrame.dtype)); self.__init_params(grayFrame) def __init_params(self,grayFrame): #记录随机生成的 行(r) 和 列(c) rand=0 r=0 c=0 #对每个像素样本进行初始化 for y in range(self.__Height): for x in range(self.__Width): for k in range(self.__defaultNbSamples): #随机获取像素样本值 rand=random.randint(0,8) r=y+self.__c_yoff[rand] if r<0: r=0 if r>=self.__Height: r=self.__Height-1 #行 c=x+self.__c_xoff[rand] if c<0: c=0 if c>=self.__Width: c=self.__Width-1 #列 #存储像素样本值 self.__samples[k][y,x] = grayFrame[r,c] self.__samples[self.__defaultNbSamples][y,x] = 0 def update(self,grayFrame,frameNo): foreground = np.zeros((self.__Height,self.__Width),dtype=np.uint8) for y in range(self.__Height): #Height for x in range(self.__Width): #Width #用于判断一个点是否是背景点,index记录已比较的样本个数,count表示匹配的样本个数 count=0;index=0; dist=0.0; while (count<self.__defaultReqMatches) and (index<self.__defaultNbSamples): dist= float(grayFrame[y,x]) - float(self.__samples[index][y,x]); if dist<0: dist=-dist if dist<self.__defaultRadius: count = count+1 index = index+1 if count>=self.__defaultReqMatches: #判断为背景像素,只有背景点才能被用来传播和更新存储样本值 self.__samples[self.__defaultNbSamples][y,x]=0 foreground[y,x] = self.__BG rand=random.randint(0,self.__defaultSubsamplingFactor) if rand==0: rand=random.randint(0,self.__defaultNbSamples) self.__samples[rand][y,x]=grayFrame[y,x] rand=random.randint(0,self.__defaultSubsamplingFactor) if rand==0: rand=random.randint(0,8) yN=y+self.__c_yoff[rand] if yN<0: yN=0 if yN>=self.__Height: yN=self.__Height-1 rand=random.randint(0,8) xN=x+self.__c_xoff[rand] if xN<0: xN=0 if xN>=self.__Width: xN=self.__Width-1 rand=random.randint(0,self.__defaultNbSamples) self.__samples[rand][yN,xN]=grayFrame[y,x] else: #判断为前景像素 foreground[y,x] = self.__FG; self.__samples[self.__defaultNbSamples][y,x] += 1 if self.__samples[self.__defaultNbSamples][y,x]>50: rand=random.randint(0,self.__defaultNbSamples) if rand==0: rand=random.randint(0,self.__defaultNbSamples) self.__samples[rand][y,x]=grayFrame[y,x] return foreground
我做的鱼的跟踪效果图
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
python,运动检测,ViBe
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]