PIL中设计的几个基本概念
1.通道(bands):即使图像的波段数,RGB图像,灰度图像
以RGB图像为例:
>from PIL import Image >im = Image.open('*.jpg') # 打开一张RGB图像 >im_bands = im.g etbands() # 获取RGB三个波段 >len(im_bands) >print im_bands[0,1,2] # 输出RGB三个值
2.模式(mode):定义了图像的类型和像素的位宽。共计9种模式:
> im.mode
① 1:1位像素,表示黑和白,但是存储的时候每个像素存储为8bit。 ② L:8位像素,表示黑和白。 ③ P:8位像素,使用调色板映射到其他模式。 ④ RGB:3x8位像素,为真彩色。 ⑤ RGBA:4x8位像素,有透明通道的真彩色。 ⑥ CMYK:4x8位像素,颜色分离。 ⑦ YCbCr:3x8位像素,彩色视频格式。 ⑧ I:32位整型像素。 ⑨ F:32位浮点型像素。
3.尺寸(size):获取图像水平和垂直方向上的像素数
> im.size()
4.坐标系统(coordinate system):
PIL使用笛卡尔像素坐标系统,坐标(0,0)位于左上角。
注意:坐标值表示像素的角;位于坐标(0,0)处的像素的中心实际上位于(0.5,0.5)。
5.调色板(palette):
调色板模式("P")适用一个颜色调色板为每一个像素定义具体的颜色值。
6.信息(info)
> im.info() # 返回值为字典对象
7.滤波器(filters):将多个输入像素映射为一个输出像素的几何操作
PIL提供了4种不同的采样滤波器:
① NEAREST:最近滤波。从输入图像中选取最近的像素作为输出像素。
② BILINEAR:双线性内插滤波。在输入图像的2*2矩阵上进行线性插值。
③ BICUBIC:双立方滤波。在输入图像的4*4矩阵上进行立方插值。
④ ANTIALIAS:平滑滤波。对所有可以影响输出像素的输入像素进行高质量的重采样滤波,以计算输出像素值。
im.resize()和im.thumbnail()用到了滤波器
方法一:resize(size,filter = None)
> from PIL import Image > im = Image.open('*.jpg') > im.size > im_resize = im.resize((256,256)) #default 情况下是NEAREST插值方法 > im_resize0 = im.resize((256,256), Image.BILINEAR) > im_resize0.size > im_resize1 = im.resize((256,256), Image.BICUBIC) > im_resize2 = im.resize((256,256), Image.ANTIALIAS)
方法二:im.thumbnail(size,filter = None)
对于pil的相关介绍就到这里了,下面分享一个使用pil进行图像处理(等比例压缩、裁剪)实例代码,如下:
#coding:utf-8 ''' python图片处理 @author:fc_lamp @blog:http://fc-lamp.blog.163.com/ ''' import Image as image #等比例压缩图片 def resizeImg(**args): args_key = {'ori_img':'','dst_img':'','dst_w':'','dst_h':'','save_q':75} arg = {} for key in args_key: if key in args: arg[key] = args[key] im = image.open(arg['ori_img']) ori_w,ori_h = im.size widthRatio = heightRatio = None ratio = 1 if (ori_w and ori_w > arg['dst_w']) or (ori_h and ori_h > arg['dst_h']): if arg['dst_w'] and ori_w > arg['dst_w']: widthRatio = float(arg['dst_w']) / ori_w #正确获取小数的方式 if arg['dst_h'] and ori_h > arg['dst_h']: heightRatio = float(arg['dst_h']) / ori_h if widthRatio and heightRatio: if widthRatio < heightRatio: ratio = widthRatio else: ratio = heightRatio if widthRatio and not heightRatio: ratio = widthRatio if heightRatio and not widthRatio: ratio = heightRatio newWidth = int(ori_w * ratio) newHeight = int(ori_h * ratio) else: newWidth = ori_w newHeight = ori_h im.resize((newWidth,newHeight),image.ANTIALIAS).save(arg['dst_img'],quality=arg['save_q']) ''' image.ANTIALIAS还有如下值: NEAREST: use nearest neighbour BILINEAR: linear interpolation in a 2x2 environment BICUBIC:cubic spline interpolation in a 4x4 environment ANTIALIAS:best down-sizing filter ''' #裁剪压缩图片 def clipResizeImg(**args): args_key = {'ori_img':'','dst_img':'','dst_w':'','dst_h':'','save_q':75} arg = {} for key in args_key: if key in args: arg[key] = args[key] im = image.open(arg['ori_img']) ori_w,ori_h = im.size dst_scale = float(arg['dst_h']) / arg['dst_w'] #目标高宽比 ori_scale = float(ori_h) / ori_w #原高宽比 if ori_scale >= dst_scale: #过高 width = ori_w height = int(width*dst_scale) x = 0 y = (ori_h - height) / 3 else: #过宽 height = ori_h width = int(height*dst_scale) x = (ori_w - width) / 2 y = 0 #裁剪 box = (x,y,width+x,height+y) #这里的参数可以这么认为:从某图的(x,y)坐标开始截,截到(width+x,height+y)坐标 #所包围的图像,crop方法与php中的imagecopy方法大为不一样 newIm = im.crop(box) im = None #压缩 ratio = float(arg['dst_w']) / width newWidth = int(width * ratio) newHeight = int(height * ratio) newIm.resize((newWidth,newHeight),image.ANTIALIAS).save(arg['dst_img'],quality=arg['save_q']) #水印(这里仅为图片水印) def waterMark(**args): args_key = {'ori_img':'','dst_img':'','mark_img':'','water_opt':''} arg = {} for key in args_key: if key in args: arg[key] = args[key] im = image.open(arg['ori_img']) ori_w,ori_h = im.size mark_im = image.open(arg['mark_img']) mark_w,mark_h = mark_im.size option ={'leftup':(0,0),'rightup':(ori_w-mark_w,0),'leftlow':(0,ori_h-mark_h), 'rightlow':(ori_w-mark_w,ori_h-mark_h) } im.paste(mark_im,option[arg['water_opt']],mark_im.convert('RGBA')) im.save(arg['dst_img']) #Demon #源图片 ori_img = 'D:/tt.jpg' #水印标 mark_img = 'D:/mark.png' #水印位置(右下) water_opt = 'rightlow' #目标图片 dst_img = 'D:/python_2.jpg' #目标图片大小 dst_w = 94 dst_h = 94 #保存的图片质量 save_q = 35 #裁剪压缩 clipResizeImg(ori_img=ori_img,dst_img=dst_img,dst_w=dst_w,dst_h=dst_h,save_q = save_q) #等比例压缩 #resizeImg(ori_img=ori_img,dst_img=dst_img,dst_w=dst_w,dst_h=dst_h,save_q=save_q) #水印 #waterMark(ori_img=ori_img,dst_img=dst_img,mark_img=mark_img,water_opt=water_opt)
总结
以上就是本文关于python使用pil进行图像处理(等比例压缩、裁剪)实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:
Python内置模块turtle绘图详解
Python中pygal绘制雷达图代码分享
python自动裁剪图像代码分享
如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]