圆月山庄资源网 Design By www.vgjia.com

PIL中设计的几个基本概念

1.通道(bands):即使图像的波段数,RGB图像,灰度图像

以RGB图像为例:

>from PIL import Image
>im = Image.open('*.jpg')   # 打开一张RGB图像
>im_bands = im.g
etbands() # 获取RGB三个波段
>len(im_bands)
>print im_bands[0,1,2]     # 输出RGB三个值

2.模式(mode):定义了图像的类型和像素的位宽。共计9种模式:

> im.mode
① 1:1位像素,表示黑和白,但是存储的时候每个像素存储为8bit。
② L:8位像素,表示黑和白。
③ P:8位像素,使用调色板映射到其他模式。
④ RGB:3x8位像素,为真彩色。
⑤ RGBA:4x8位像素,有透明通道的真彩色。
⑥ CMYK:4x8位像素,颜色分离。
⑦ YCbCr:3x8位像素,彩色视频格式。
⑧ I:32位整型像素。
⑨ F:32位浮点型像素。

3.尺寸(size):获取图像水平和垂直方向上的像素数

> im.size()

4.坐标系统(coordinate system):

PIL使用笛卡尔像素坐标系统,坐标(0,0)位于左上角。

注意:坐标值表示像素的角;位于坐标(0,0)处的像素的中心实际上位于(0.5,0.5)。

5.调色板(palette):

调色板模式("P")适用一个颜色调色板为每一个像素定义具体的颜色值。

6.信息(info)

> im.info() # 返回值为字典对象

7.滤波器(filters):将多个输入像素映射为一个输出像素的几何操作

PIL提供了4种不同的采样滤波器:

① NEAREST:最近滤波。从输入图像中选取最近的像素作为输出像素。

② BILINEAR:双线性内插滤波。在输入图像的2*2矩阵上进行线性插值。

③ BICUBIC:双立方滤波。在输入图像的4*4矩阵上进行立方插值。

④ ANTIALIAS:平滑滤波。对所有可以影响输出像素的输入像素进行高质量的重采样滤波,以计算输出像素值。

im.resize()和im.thumbnail()用到了滤波器

方法一:resize(size,filter = None)

> from PIL import Image 
> im = Image.open('*.jpg')
> im.size
> im_resize = im.resize((256,256)) #default 情况下是NEAREST插值方法
> im_resize0 = im.resize((256,256), Image.BILINEAR)
> im_resize0.size
> im_resize1 = im.resize((256,256), Image.BICUBIC)
> im_resize2 = im.resize((256,256), Image.ANTIALIAS)

方法二:im.thumbnail(size,filter = None)

对于pil的相关介绍就到这里了,下面分享一个使用pil进行图像处理(等比例压缩、裁剪)实例代码,如下:

#coding:utf-8
'''
  python图片处理
  @author:fc_lamp
  @blog:http://fc-lamp.blog.163.com/
'''
import Image as image
#等比例压缩图片
def resizeImg(**args):
  args_key = {'ori_img':'','dst_img':'','dst_w':'','dst_h':'','save_q':75}
  arg = {}
  for key in args_key:
    if key in args:
      arg[key] = args[key]
  im = image.open(arg['ori_img'])
  ori_w,ori_h = im.size
  widthRatio = heightRatio = None
  ratio = 1
  if (ori_w and ori_w > arg['dst_w']) or (ori_h and ori_h > arg['dst_h']):
    if arg['dst_w'] and ori_w > arg['dst_w']:
      widthRatio = float(arg['dst_w']) / ori_w #正确获取小数的方式
    if arg['dst_h'] and ori_h > arg['dst_h']:
      heightRatio = float(arg['dst_h']) / ori_h
    if widthRatio and heightRatio:
      if widthRatio < heightRatio:
        ratio = widthRatio
      else:
        ratio = heightRatio
    if widthRatio and not heightRatio:
      ratio = widthRatio
    if heightRatio and not widthRatio:
      ratio = heightRatio
    newWidth = int(ori_w * ratio)
    newHeight = int(ori_h * ratio)
  else:
    newWidth = ori_w
    newHeight = ori_h
  im.resize((newWidth,newHeight),image.ANTIALIAS).save(arg['dst_img'],quality=arg['save_q'])
  '''
  image.ANTIALIAS还有如下值:
  NEAREST: use nearest neighbour
  BILINEAR: linear interpolation in a 2x2 environment
  BICUBIC:cubic spline interpolation in a 4x4 environment
  ANTIALIAS:best down-sizing filter
  '''
#裁剪压缩图片
def clipResizeImg(**args):
  args_key = {'ori_img':'','dst_img':'','dst_w':'','dst_h':'','save_q':75}
  arg = {}
  for key in args_key:
    if key in args:
      arg[key] = args[key]
  im = image.open(arg['ori_img'])
  ori_w,ori_h = im.size
  dst_scale = float(arg['dst_h']) / arg['dst_w'] #目标高宽比
  ori_scale = float(ori_h) / ori_w #原高宽比
  if ori_scale >= dst_scale:
    #过高
    width = ori_w
    height = int(width*dst_scale)
    x = 0
    y = (ori_h - height) / 3
  else:
    #过宽
    height = ori_h
    width = int(height*dst_scale)
    x = (ori_w - width) / 2
    y = 0
  #裁剪
  box = (x,y,width+x,height+y)
  #这里的参数可以这么认为:从某图的(x,y)坐标开始截,截到(width+x,height+y)坐标
  #所包围的图像,crop方法与php中的imagecopy方法大为不一样
  newIm = im.crop(box)
  im = None
  #压缩
  ratio = float(arg['dst_w']) / width
  newWidth = int(width * ratio)
  newHeight = int(height * ratio)
  newIm.resize((newWidth,newHeight),image.ANTIALIAS).save(arg['dst_img'],quality=arg['save_q'])
#水印(这里仅为图片水印)
def waterMark(**args):
  args_key = {'ori_img':'','dst_img':'','mark_img':'','water_opt':''}
  arg = {}
  for key in args_key:
    if key in args:
      arg[key] = args[key]
  im = image.open(arg['ori_img'])
  ori_w,ori_h = im.size
  mark_im = image.open(arg['mark_img'])
  mark_w,mark_h = mark_im.size
  option ={'leftup':(0,0),'rightup':(ori_w-mark_w,0),'leftlow':(0,ori_h-mark_h),
       'rightlow':(ori_w-mark_w,ori_h-mark_h)
       }
  im.paste(mark_im,option[arg['water_opt']],mark_im.convert('RGBA'))
  im.save(arg['dst_img'])
#Demon
#源图片
ori_img = 'D:/tt.jpg'
#水印标
mark_img = 'D:/mark.png'
#水印位置(右下)
water_opt = 'rightlow'
#目标图片
dst_img = 'D:/python_2.jpg'
#目标图片大小
dst_w = 94
dst_h = 94
#保存的图片质量
save_q = 35
#裁剪压缩
clipResizeImg(ori_img=ori_img,dst_img=dst_img,dst_w=dst_w,dst_h=dst_h,save_q = save_q)
#等比例压缩
#resizeImg(ori_img=ori_img,dst_img=dst_img,dst_w=dst_w,dst_h=dst_h,save_q=save_q)
#水印
#waterMark(ori_img=ori_img,dst_img=dst_img,mark_img=mark_img,water_opt=water_opt)

总结

以上就是本文关于python使用pil进行图像处理(等比例压缩、裁剪)实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

Python内置模块turtle绘图详解

Python中pygal绘制雷达图代码分享

python自动裁剪图像代码分享

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

标签:
python,pil,压缩图片,python,压缩,pil,pil图像处理库,python,pil,image

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。