圆月山庄资源网 Design By www.vgjia.com

平时压力测试,生成一些数据后分析,直接看 log 不是很直观,前段时间看到公司同事分享了一个绘制图表python 模块 : plotly, 觉得很实用,利用周末时间熟悉下。

python实现数据图表
plotly

plotly 主页 : https://plot.ly/python/

安装

在 ubuntu 环境下,安装 plotly 很简单
python 版本2.7+

$ sudo pip install plotly

绘图

在 plotly 网站注册后,可以直接将生成的图片保存到网站上,便于共享保存。
这里使用离线的接口,生成的 html 保存在本地文件

绘制直线图

先随便搞一组数据用来绘制图表

lcd@ubuntu:~/$ cat gen_log.sh 
#!/bin/bash
count=$1
while [ $count -gt 0 ]
do
  sar -n DEV 1 1 | grep "Average:" | grep "eth0" | awk '{print $4,$5,$6}'
  count=$(($count-1))
done
lcd@ubuntu:~/$ sh gen_log.sh 1000 > log.txt

通过上述脚本,获取每秒钟网卡的3个数据,记录文本,利用 ploty 按时间绘制成直线图,实现如下:

#!/usr/bin/env python
import plotly.offline as pltoff
import plotly.graph_objs as go

def line_plots(name="line_plots.html"):
  dataset = {
    'time': [],
    'rx': [],
    'tx': [],
    'util': []
  }
  with open("./log.txt") as f:
    i = 0
    for line in f:
      items = line.split()
      dataset['time'].append(i)
      dataset['rx'].append(items[0])
      dataset['tx'].append(items[1])
      dataset['util'].append(items[2])
      i += 1
      
  data_g = []
  # 构建 time - rx 数据关系,折线图
  tr_rx = go.Scatter(
    x = dataset['time'],
    y = dataset['rx'],
    name = 'rx')
  data_g.append(tr_rx)

  tr_tx = go.Scatter(
    x = dataset['time'],
    y = dataset['tx'],
    name = 'tx')
  data_g.append(tr_tx)

  tr_util = go.Scatter(
    x = dataset['time'],
    y = dataset['util'],
    name = 'util')
  data_g.append(tr_util)

  # 设置图表布局
  layout = go.Layout(title="Line plots",
    xaxis={'title':'time'}, yaxis={'title':'value'})
  fig = go.Figure(data=data_g, layout=layout)
  # 生成离线html
  pltoff.plot(fig, filename=name)

if __name__=='__main__':
  line_plots()

生成图表如下所示 :

python实现数据图表
line_plot

柱形图

#!/usr/bin/env python
import plotly.offline as pltoff
import plotly.graph_objs as go

def bar_charts(name="bar_charts.html"):
  dataset = {'x':['man', 'woman'],
        'y1':[35, 26],
        'y2':[33, 30]}
  data_g = []
  tr_y1 = go.Bar(
    x = dataset['x'],
    y = dataset['y1'],
    name = '2016'

  )
  data_g.append(tr_y1)

  tr_y2 = go.Bar(
  x = dataset['x'],
  y = dataset['y2'],
  name = '2017'

  )
  data_g.append(tr_y2)
  layout = go.Layout(title="bar charts",
    xaxis={'title':'x'}, yaxis={'title':'value'})
  fig = go.Figure(data=data_g, layout=layout)
  pltoff.plot(fig, filename=name)

if __name__=='__main__':
  bar_charts()

python实现数据图表

bar char

饼状图

#!/usr/bin/env python
import plotly.offline as pltoff
import plotly.graph_objs as go

def pie_charts(name='pie_chart.html'):
  dataset = {
    'labels':['Windows', 'Linux', 'MacOS'],
    'values':[280, 10, 30]}
  data_g = []
  tr_p = go.Pie(
  labels = dataset['labels'],
  values = dataset['values']

  )
  data_g.append(tr_p)
  layout = go.Layout(title="pie charts")
  fig = go.Figure(data=data_g, layout=layout)
  pltoff.plot(fig, filename=name)

if __name__=='__main__':
  pie_charts()

python实现数据图表

标签:
python,数据图表,python,plotly,python绘制图表

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。