前言
大家都知道Python的优点是开发效率高,使用方便,C++则是运行效率高,这两者可以相辅相成,不管是在Python项目中嵌入C++代码,或是在C++项目中用Python实现外围功能,都可能遇到Python调用C++模块的需求,下面列举出集中c++代码导出成Python接口的几种基本方法,一起来学习学习吧。
原生态导出
Python解释器就是用C实现,因此只要我们的C++的数据结构能让Python认识,理论上就是可以被直接调用的。我们实现test1.cpp如下
#include <Python.h> int Add(int x, int y) { return x + y; } int Del(int x, int y) { return x - y; } PyObject* WrappAdd(PyObject* self, PyObject* args) { int x, y; if (!PyArg_ParseTuple(args, "ii", &x, &y)) { return NULL; } return Py_BuildValue("i", Add(x, y)); } PyObject* WrappDel(PyObject* self, PyObject* args) { int x, y; if (!PyArg_ParseTuple(args, "ii", &x, &y)) { return NULL; } return Py_BuildValue("i", Del(x, y)); } static PyMethodDef test_methods[] = { {"Add", WrappAdd, METH_VARARGS, "something"}, {"Del", WrappDel, METH_VARARGS, "something"}, {NULL, NULL} }; extern "C" void inittest1() { Py_InitModule("test1", test_methods); }
编译命令如下
g++ -fPIC -shared test1.cpp -I/usr/include/python2.6 -o test1.so
运行Python解释器,测试如下
> import test1 > test1.Add(1,2) 3
这里要注意一下几点
- 如果生成的动态库名字为test1,则源文件里必须有inittest1这个函数,且Py_InitModule的第一个参数必须是“test1”,否则Python导入模块会失败
- 如果是cpp源文件,inittest1函数必须用extern "C"修饰,如果是c源文件,则不需要。原因是Python解释器在导入库时会寻找initxxx这样的函数,而C和C++对函数符号的编码方式不同,C++在对函数符号进行编码时会考虑函数长度和参数类型,具体可以通过
nm test1.so
查看函数符号,c++filt工具可通过符号反解出函数原型
通过boost实现
我们使用和上面同样的例子,实现test2.cpp如下
#include <boost/python/module.hpp> #include <boost/python/def.hpp> using namespace boost::python; int Add(const int x, const int y) { return x + y; } int Del(const int x, const int y) { return x - y; } BOOST_PYTHON_MODULE(test2) { def("Add", Add); def("Del", Del); }
其中BOOST_PYTHON_MODULE的参数为要导出的模块名字
编译命令如下
g++ test2.cpp -fPIC -shared -o test2.so -I/usr/include/python2.6 -I/usr/local/include -L/usr/local/lib -lboost_python
注意: 编译时需要指定boost头文件和库的路径,我这里分别是/usr/local/include和/usr/local/lib
或者通过setup.py导出模块
#!/usr/bin/env python from distutils.core import setup from distutils.extension import Extension setup(name="PackageName", ext_modules=[ Extension("test2", ["test2.cpp"], libraries = ["boost_python"]) ])
Extension的第一个参数为模块名,第二个参数为文件名
执行如下命令
python setup.py build
这时会生成build目录,找到里面的test2.so,并进入同一级目录,验证如下
> import test2 > test2.Add(1,2) 3 > test2.Del(1,2) -1
导出类
test3.cpp实现如下
#include <boost/python.hpp> using namespace boost::python; class Test { public: int Add(const int x, const int y) { return x + y; } int Del(const int x, const int y) { return x - y; } }; BOOST_PYTHON_MODULE(test3) { class_<Test>("Test") .def("Add", &Test::Add) .def("Del", &Test::Del); }
注意:BOOST_PYTHON_MODULE里的.def使用方法有点类似Python的语法,等同于
class_<Test>("Test").def("Add", &Test::Add); class_<Test>("Test").def("Del", &Test::Del);
编译命令如下
g++ test3.cpp -fPIC -shared -o test3.so -I/usr/include/python2.6 -I/usr/local/include/boost -L/usr/local/lib -lboost_python
测试如下
> import test3 > test = test3.Test() > test.Add(1,2) 3 > test.Del(1,2) -1
导出变参函数
test4.cpp实现如下
#include <boost/python.hpp> using namespace boost::python; class Test { public: int Add(const int x, const int y, const int z = 100) { return x + y + z; } }; int Del(const int x, const int y, const int z = 100) { return x - y - z; } BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(Add_member_overloads, Add, 2, 3) BOOST_PYTHON_FUNCTION_OVERLOADS(Del_overloads, Del, 2, 3) BOOST_PYTHON_MODULE(test4) { class_<Test>("Test") .def("Add", &Test::Add, Add_member_overloads(args("x", "y", "z"), "something")); def("Del", Del, Del_overloads(args("x", "y", "z"), "something")); }
这里Add和Del函数均采用了默认参数,Del为普通函数,Add为类成员函数,这里分别调用了不同的宏,宏的最后两个参数分别代表函数的最少参数个数和最多参数个数
编译命令如下
g++ test4.cpp -fPIC -shared -o test4.so -I/usr/include/python2.6 -I/usr/local/include/boost -L/usr/local/lib -lboost_python
测试如下
> import test4 > test = test4.Test() > print test.Add(1,2) 103 > print test.Add(1,2,z=3) 6 > print test4.Del(1,2) -1 > print test4.Del(1,2,z=3) -1
导出带Python对象的接口
既然是导出为Python接口,调用者难免会使用Python特有的数据结构,比如tuple,list,dict,由于原生态方法太麻烦,这里只记录boost的使用方法,假设要实现如下的Python函数功能
def Square(list_a) { return [x * x for x in list_a] }
即对传入的list每个元素计算平方,返回list类型的结果
代码如下
#include <boost/python.hpp> boost::python::list Square(boost::python::list& data) { boost::python::list ret; for (int i = 0; i < len(data); ++i) { ret.append(data[i] * data[i]); } return ret; } BOOST_PYTHON_MODULE(test5) { def("Square", Square); }
编译命令如下
g++ test5.cpp -fPIC -shared -o test5.so -I/usr/include/python2.6 -I/usr/local/include/boost -L/usr/local/lib -lboost_python
测试如下
> import test5 > test5.Square([1,2,3]) [1, 4, 9]
boost实现了boost::python::tuple
, boost::python::list
, boost::python::dict
这几个数据类型,使用方法基本和Python保持一致,具体方法可以查看boost头文件里的boost/python/tuple.hpp及其它对应文件
另外比较常用的一个函数是boost::python::make_tuple()
,使用方法如下
boost::python::tuple(int a, int b, int c) { return boost::python::make_tuple(a, b, c); }
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]