前言
Python用于处理文本数据绝对是个利器,极为简单的读取、分割、过滤、转换支持,使得开发者不需要考虑繁杂的流文件处理过程(相对于JAVA来说的,嘻嘻)。博主自己工作中,一些复杂的文本数据处理计算,包括在HADOOP上编写Streaming程序,均是用Python完成。
而在文本处理的过程中,将文件加载内存中是第一步,这就涉及到怎样将文件中的某一列映射到具体的变量的过程,最最愚笨的方法,就是按照字段的下标进行引用,比如这样子:
# fields是读取了一行,并且按照分隔符分割之后的列表 user_id = fields[0] user_name = fields[1] user_type = fields[2]
如果按照这种方式读取,一旦文件有顺序、增减列的变动,代码的维护是个噩梦,这种代码一定要杜绝。
本文推荐两种优雅的方式来读取数据,都是先配置字段模式,然后按照模式读取,而模式则有字典模式和列表模式两种形式;
读取文件,按照分隔符分割成字段数据列表
首先读取文件,按照分隔符分割每一行的数据,返回字段列表,以便后续处理。
代码如下:
def read_file_data(filepath): '''根据路径按行读取文件, 参数filepath:文件的绝对路径 @param filepath: 读取文件的路径 @return: 按\t分割后的每行的数据列表 ''' fin = open(filepath, 'r') for line in fin: try: line = line[:-1] if not line: continue except: continue try: fields = line.split("\t") except: continue # 抛出当前行的分割列表 yield fields fin.close()
使用yield关键字,每次抛出单个行的分割数据,这样在调度程序中可以用for fields in read_file_data(fpath)
的方式读取每一行。
映射到模型之方法1:使用配置好的字典模式,装配读取的数据列表
这种方法配置一个{“字段名”: 字段位置}的字典作为数据模式,然后按照该模式装配读取的列表数据,最后实现用字典的方式访问数据。
所使用的函数:
@staticmethod def map_fields_dict_schema(fields, dict_schema): """根据字段的模式,返回模式和数据值的对应值;例如 fields为['a','b','c'],schema为{'name':0, 'age':1},那么就返回{'name':'a','age':'b'} @param fields: 包含有数据的数组,一般是通过对一个Line String通过按照\t分割得到 @param dict_schema: 一个词典,key是字段名称,value是字段的位置; @return: 词典,key是字段名称,value是字段值 """ pdict = {} for fstr, findex in dict_schema.iteritems(): pdict[fstr] = str(fields[int(findex)]) return pdict
有了该方法和之前的方法,可以用以下的方式读取数据:
# coding:utf8 """ @author: www.crazyant.net 测试使用字典模式加载数据列表 优点:对于多列文件,只通过配置需要读取的字段,就能读取对应列的数据 缺点:如果字段较多,每个字段的位置配置,较为麻烦 """ import file_util import pprint # 配置好的要读取的字典模式,可以只配置自己关心的列的位置 dict_schema = {"userid":0, "username":1, "usertype":2} for fields in file_util.FileUtil.read_file_data("userfile.txt"): # 将字段列表,按照字典模式进行映射 dict_fields = file_util.FileUtil.map_fields_dict_schema(fields, dict_schema) pprint.pprint(dict_fields)
输出结果:
{'userid': '1', 'username': 'name1', 'usertype': '0'} {'userid': '2', 'username': 'name2', 'usertype': '1'} {'userid': '3', 'username': 'name3', 'usertype': '2'} {'userid': '4', 'username': 'name4', 'usertype': '3'} {'userid': '5', 'username': 'name5', 'usertype': '4'} {'userid': '6', 'username': 'name6', 'usertype': '5'} {'userid': '7', 'username': 'name7', 'usertype': '6'} {'userid': '8', 'username': 'name8', 'usertype': '7'} {'userid': '9', 'username': 'name9', 'usertype': '8'} {'userid': '10', 'username': 'name10', 'usertype': '9'} {'userid': '11', 'username': 'name11', 'usertype': '10'} {'userid': '12', 'username': 'name12', 'usertype': '11'}
映射到模型之方法2:使用配置好的列表模式,装配读取的数据列表
如果需要读取文件所有列,或者前面的一些列,那么配置字典模式优点复杂,因为需要给每个字段配置索引位置,并且这些位置是从0开始完后数的,属于低级劳动,需要消灭。
列表模式应命运而生,先将配置好的列表模式转换成字典模式,然后按字典加载就可以实现。
转换模式,以及用按列表模式读取的代码:
@staticmethod def transform_list_to_dict(para_list): """把['a', 'b']转换成{'a':0, 'b':1}的形式 @param para_list: 列表,里面是每个列对应的字段名 @return: 字典,里面是字段名和位置的映射 """ res_dict = {} idx = 0 while idx < len(para_list): res_dict[str(para_list[idx]).strip()] = idx idx += 1 return res_dict @staticmethod def map_fields_list_schema(fields, list_schema): """根据字段的模式,返回模式和数据值的对应值;例如 fields为['a','b','c'],schema为{'name', 'age'},那么就返回{'name':'a','age':'b'} @param fields: 包含有数据的数组,一般是通过对一个Line String通过按照\t分割得到 @param list_schema: 列名称的列表list @return: 词典,key是字段名称,value是字段值 """ dict_schema = FileUtil.transform_list_to_dict(list_schema) return FileUtil.map_fields_dict_schema(fields, dict_schema)
使用的时候,可以用列表的形式配置模式,不需要配置索引更加简洁:
# coding:utf8 """ @author: www.crazyant.net 测试使用列表模式加载数据列表 优点:如果读取所有列,用列表模式只需要按顺序写出各个列的字段名就可以 缺点:不能够只读取关心的字段,需要全部读取 """ import file_util import pprint # 配置好的要读取的列表模式,只能配置前面的列,或者所有咧 list_schema = ["userid", "username", "usertype"] for fields in file_util.FileUtil.read_file_data("userfile.txt"): # 将字段列表,按照字典模式进行映射 dict_fields = file_util.FileUtil.map_fields_list_schema(fields, list_schema) pprint.pprint(dict_fields)
运行结果和字典模式的完全一样。
file_util.py全部代码
以下是file_util.py中的全部代码,可以放在自己的公用类库中使用
# -*- encoding:utf8 -*- ''' @author: www.crazyant.net @version: 2014-12-5 ''' class FileUtil(object): '''文件、路径常用操作方法 ''' @staticmethod def read_file_data(filepath): '''根据路径按行读取文件, 参数filepath:文件的绝对路径 @param filepath: 读取文件的路径 @return: 按\t分割后的每行的数据列表 ''' fin = open(filepath, 'r') for line in fin: try: line = line[:-1] if not line: continue except: continue try: fields = line.split("\t") except: continue # 抛出当前行的分割列表 yield fields fin.close() @staticmethod def transform_list_to_dict(para_list): """把['a', 'b']转换成{'a':0, 'b':1}的形式 @param para_list: 列表,里面是每个列对应的字段名 @return: 字典,里面是字段名和位置的映射 """ res_dict = {} idx = 0 while idx < len(para_list): res_dict[str(para_list[idx]).strip()] = idx idx += 1 return res_dict @staticmethod def map_fields_list_schema(fields, list_schema): """根据字段的模式,返回模式和数据值的对应值;例如 fields为['a','b','c'],schema为{'name', 'age'},那么就返回{'name':'a','age':'b'} @param fields: 包含有数据的数组,一般是通过对一个Line String通过按照\t分割得到 @param list_schema: 列名称的列表list @return: 词典,key是字段名称,value是字段值 """ dict_schema = FileUtil.transform_list_to_dict(list_schema) return FileUtil.map_fields_dict_schema(fields, dict_schema) @staticmethod def map_fields_dict_schema(fields, dict_schema): """根据字段的模式,返回模式和数据值的对应值;例如 fields为['a','b','c'],schema为{'name':0, 'age':1},那么就返回{'name':'a','age':'b'} @param fields: 包含有数据的数组,一般是通过对一个Line String通过按照\t分割得到 @param dict_schema: 一个词典,key是字段名称,value是字段的位置; @return: 词典,key是字段名称,value是字段值 """ pdict = {} for fstr, findex in dict_schema.iteritems(): pdict[fstr] = str(fields[int(findex)]) return pdict
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家学习或者使用python能有一定的帮助,如果有疑问大家可以留言交流。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]