安装
首先需要安装好Java和Scala,然后下载Spark安装,确保PATH 和JAVA_HOME 已经设置,然后需要使用Scala的SBT 构建Spark如下:
$ sbt/sbt assembly
构建时间比较长。构建完成后,通过运行下面命令确证安装成功:
$ ./bin/spark-shell
scala> val textFile = sc.textFile("README.md") // 创建一个指向 README.md 引用 scala> textFile.count // 对这个文件内容行数进行计数 scala> textFile.first // 打印出第一行
Apache访问日志分析器
首先我们需要使用Scala编写一个对Apache访问日志的分析器,所幸已经有人编写完成,下载Apache logfile parser code。使用SBT进行编译打包:
sbt compile sbt test sbt package
打包名称假设为AlsApacheLogParser.jar。
然后在Linux命令行启动Spark:
// this works $ MASTER=local[4] SPARK_CLASSPATH=AlsApacheLogParser.jar ./bin/spark-shell
对于Spark 0.9,有些方式并不起效:
// does not work $ MASTER=local[4] ADD_JARS=AlsApacheLogParser.jar ./bin/spark-shell // does not work spark> :cp AlsApacheLogParser.jar
上传成功后,在Spark REPL创建AccessLogParser 实例:
import com.alvinalexander.accesslogparser._ val p = new AccessLogParser
现在就可以像之前读取readme.cmd一样读取apache访问日志accesslog.small:
scala> val log = sc.textFile("accesslog.small") 14/03/09 11:25:23 INFO MemoryStore: ensureFreeSpace(32856) called with curMem=0, maxMem=309225062 14/03/09 11:25:23 INFO MemoryStore: Block broadcast_0 stored as values to memory (estimated size 32.1 KB, free 294.9 MB) log: org.apache.spark.rdd.RDD[String] = MappedRDD[1] at textFile at <console>:15 scala> log.count (a lot of output here) res0: Long = 100000
分析Apache日志
我们可以分析Apache日志中404有多少个,创建方法如下:
def getStatusCode(line: Option[AccessLogRecord]) = { line match { case Some(l) => l.httpStatusCode case None => "0" } }
其中Option[AccessLogRecord]是分析器的返回值。
然后在Spark命令行使用如下:
log.filter(line => getStatusCode(p.parseRecord(line)) == "404").count
这个统计将返回httpStatusCode是404的行数。
深入挖掘
下面如果我们想知道哪些URL是有问题的,比如URL中有一个空格等导致404错误,显然需要下面步骤:
- 过滤出所有 404 记录
- 从每个404记录得到request字段(分析器请求的URL字符串是否有空格等)
- 不要返回重复的记录
创建下面方法:
// get the `request` field from an access log record def getRequest(rawAccessLogString: String): Option[String] = { val accessLogRecordOption = p.parseRecord(rawAccessLogString) accessLogRecordOption match { case Some(rec) => Some(rec.request) case None => None } }
将这些代码贴入Spark REPL,再运行如下代码:
log.filter(line => getStatusCode(p.parseRecord(line)) == "404").map(getRequest(_)).count val recs = log.filter(line => getStatusCode(p.parseRecord(line)) == "404").map(getRequest(_)) val distinctRecs = log.filter(line => getStatusCode(p.parseRecord(line)) == "404").map(getRequest(_)).distinct distinctRecs.foreach(println)
总结
对于访问日志简单分析当然是要grep比较好,但是更复杂的查询就需要Spark了。很难判断 Spark在单个系统上的性能。这是因为Spark是针对分布式系统大文件。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 【雨果唱片】中国管弦乐《鹿回头》WAV
- APM亚流新世代《一起冒险》[FLAC/分轨][106.77MB]
- 崔健《飞狗》律冻文化[WAV+CUE][1.1G]
- 罗志祥《舞状元 (Explicit)》[320K/MP3][66.77MB]
- 尤雅.1997-幽雅精粹2CD【南方】【WAV+CUE】
- 张惠妹.2007-STAR(引进版)【EMI百代】【WAV+CUE】
- 群星.2008-LOVE情歌集VOL.8【正东】【WAV+CUE】
- 罗志祥《舞状元 (Explicit)》[FLAC/分轨][360.76MB]
- Tank《我不伟大,至少我能改变我。》[320K/MP3][160.41MB]
- Tank《我不伟大,至少我能改变我。》[FLAC/分轨][236.89MB]
- CD圣经推荐-夏韶声《谙2》SACD-ISO
- 钟镇涛-《百分百钟镇涛》首批限量版SACD-ISO
- 群星《继续微笑致敬许冠杰》[低速原抓WAV+CUE]
- 潘秀琼.2003-国语难忘金曲珍藏集【皇星全音】【WAV+CUE】
- 林东松.1997-2039玫瑰事件【宝丽金】【WAV+CUE】