圆月山庄资源网 Design By www.vgjia.com

本文将简单介绍四种获取对象的方法。

假如有以下的类:

class Person(object):
 def __init__(self, name, age):
  self.name = name
  self.age = age
  
 def __str__(self):
  return 'name=%s, age=%s' % (self.name, self.age)

方法一:使用属性运算符

print(xmr.name)

方法二:通过属性字典__dict__

print(xmr.__dict__['name'])

方法三:通过getattr函数

print(getattr(xmr, 'name'))

方法四:operator.attrgetter

import operator
 
op = operator.attrgetter('name')
print(op(xmr))

方法四可以用于对象的排序,比如需要根据年龄age来排序Person对象:

import operator
 
p_list = [Person('xiemanR', 18), Person('zhangshan', 17), Person('lisi', 20), Person('wangwu', 25)]
 
r = sorted(p_list, key=operator.attrgetter('age'))
 
for i in r:
 print(i)

输出结果:

Person(name=zhangshan, age=17)
Person(name=xiemanR, age=18)
Person(name=lisi, age=20)
Person(name=wangwu, age=25)

PS:其实第四种方法是调用第三种方法的,只是简单封装了一下,我们看看operator.attrgetter实现就知道了:

class attrgetter:
 def __init__(self, attr, *attrs):
  if not attrs:
   if not isinstance(attr, str):
    raise TypeError('attribute name must be a string')
   names = attr.split('.')
   def func(obj):
    for name in names:
     obj = getattr(obj, name)
    return obj
   self._call = func
  else:
   getters = tuple(map(attrgetter, (attr,) + attrs))
   def func(obj):
    return tuple(getter(obj) for getter in getters)
   self._call = func
 
 def __call__(self, obj):
  return self._call(obj)

完。

补充知识:深入理解python对象及属性

类属性和实例属性

首先来看看类属性和类实例的属性在python中如何存储,通过__dir__方法来查看对象的属性

> class Test(object):
    pass
> test = Test()
# 查看类属性
> dir(Test)
['__class__','__delattr__','__dict__','__doc__','__format__',
'__getattribute__', '__hash__', '__init__', '__module__',
 '__new__', '__reduce__', '__reduce_ex__', '__repr__', 
 '__setattr__', '__sizeof__', '__str__', '__subclasshook__',
 '__weakref__']
# 查看实例属性
> dir(test)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', 
'__getattribute__', '__hash__', '__init__', '__module__',
 '__new__', '__reduce__', '__reduce_ex__', '__repr__',
 '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 
 '__weakref__']

我们主要看一个属性__dict__,因为 __dict__保存的对象的属性,看下面一个例子

> class Spring(object):
...   season = "the spring of class"
... 

# 查看Spring类保存的属性
> Spring.__dict__
dict_proxy({'__dict__': <attribute '__dict__' of 'Spring' objects>, 
'season': 'the spring of class', 
'__module__': '__main__', 
'__weakref__': <attribute '__weakref__' of 'Spring' objects>, 
'__doc__': None})

# 通过两种方法访问类属性
> Spring.__dict__['season']
'the spring of class'
> Spring.season
'the spring of class'

发现__dict__有个'season'键,这就是这个类的属性,其值就是类属性的数据.

接来看,看看它的实例属性

> s = Spring()
# 实例属性的__dict__是空的
> s.__dict__
{}
# 其实是指向的类属性
> s.season
'the spring of class'

# 建立实例属性
> s.season = "the spring of instance"
# 这样,实例属性里面就不空了。这时候建立的实例属性和类属性重名,并且把它覆盖了
> s.__dict__
{'season': 'the spring of instance'}
> s.__dict__['season']
'the spring of instance'
> s.season
'the spring of instance'

# 类属性没有受到实例属性的影响
> Spring.__dict__['season']
'the spring of class'
> Spring.__dict__
dict_proxy({'__dict__': <attribute '__dict__' of 'Spring' objects>, 'season': 'the spring of class', '__module__': '__main__', '__weakref__': <attribute '__weakref__' of 'Spring' objects>, '__doc__': None})

# 如果将实例属性删除,又会调用类属性
> del s.season
> s.__dict__
{}
> s.season
'the spring of class'

# 自定义实例属性,对类属性没有影响
> s.lang = "python"
> s.__dict__
{'lang': 'python'}
> s.__dict__['lang']
'python'

# 修改类属性
> Spring.flower = "peach"
> Spring.__dict__
dict_proxy({'__module__': '__main__', 
'flower': 'peach', 
'season': 'the spring of class', 
'__dict__': <attribute '__dict__' of 'Spring' objects>, '__weakref__': <attribute '__weakref__' of 'Spring' objects>, '__doc__': None})
> Spring.__dict__['flower']
'peach'
# 实例中的__dict__并没有变化
> s.__dict__
{'lang': 'python'}
# 实例中找不到flower属性,调用类属性
> s.flower
'peach'

下面看看类中包含方法,__dict__如何发生变化

# 定义类
> class Spring(object):
...   def tree(self, x):
...     self.x = x
...     return self.x
... 
# 方法tree在__dict__里面
> Spring.__dict__
dict_proxy({'__dict__': <attribute '__dict__' of 'Spring' objects>, 
'__weakref__': <attribute '__weakref__' of 'Spring' objects>, 
'__module__': '__main__', 
'tree': <function tree at 0xb748fdf4>, 
'__doc__': None})
> Spring.__dict__['tree']
<function tree at 0xb748fdf4>

# 建立实例,但是__dict__中没有方法 
> t = Spring()
> t.__dict__
{}

# 执行方法
> t.tree("xiangzhangshu")
'xiangzhangshu'
# 实例方法(t.tree('xiangzhangshu'))的第一个参数(self,但没有写出来)绑定实例 t,透过 self.x 来设定值,即给 t.__dict__添加属性值。
> t.__dict__
{'x': 'xiangzhangshu'}
# 如果没有将x 赋值给 self 的属性,而是直接 return,结果发生了变化
> class Spring(object):
...   def tree(self, x):
...     return x
> s = Spring()
> s.tree("liushu")
'liushu'
> s.__dict__
{}

需要理解python中的一个观点,一切都是对象,不管是类还是实例,都可以看成是对象,符合object.attribute ,都会有自己的属性

使用__slots__优化内存使用

默认情况下,python在各个实例中为名为__dict__的字典里存储实例属性,而字典会消耗大量内存(字典要使用底层散列表提升访问速度), 通过__slots__类属性,在元组中存储实例属性,不用字典,从而节省大量内存

# 在类中定义__slots__属性就是说这个类中所有实例的属性都在这儿了,如果几百万个实例同时活动,能节省大量内存
> class Spring(object):
...   __slots__ = ("tree", "flower")
... 
# 仔细看看 dir() 的结果,还有__dict__属性吗?没有了,的确没有了。也就是说__slots__把__dict__挤出去了,它进入了类的属性。
> dir(Spring)
['__class__', '__delattr__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__slots__', '__str__', '__subclasshook__', 'flower', 'tree']
> Spring.__slots__
('tree', 'flower')
# 实例化
> t = Spring()
> t.__slots__
('tree', 'flower')

# 通过类赋予属性值
> Spring.tree = "liushu"
# tree这个属性是只读的, 实例不能修改
> t.tree = "guangyulan"
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'Spring' object attribute 'tree' is read-only
> t.tree
'liushu'

# 对于用类属性赋值的属性,只能用来修改
> Spring.tree = "guangyulan"
> t.tree
'guangyulan'

# 对于没有用类属性赋值的属性,可以通过实例来修改
> t.flower = "haitanghua"
> t.flower
'haitanghua'
# 实例属性的值并没有传回到类属性,你也可以理解为新建立了一个同名的实例属性
> Spring.flower
<member 'flower' of 'Spring' objects>
# 如果再给类属性赋值
> Spring.flower = "ziteng"
> t.flower
'ziteng'

如果使用的当,__slots__可以显著节省内存,按需要注意一下问题

在类中定义__slots__之后,实例不能再有__slots__所列名称之外的其他属性

每个子类都要定义__slots__熟悉,因为解释器会忽略继承__slots__属性

如果不把__werkref__加入__slots__,实例不能作为弱引用的目标

属性的魔术方法

来看几个魔术方法

__setattr__(self,name,value):如果要给 name 赋值,就调用这个方法。
__getattr__(self,name):如果 name 被访问,同时它不存在的时候,此方法被调用。
__getattribute__(self,name):当 name被访问时自动被调用(注意:这个仅能用于新式类),无论 name 是否存在,都要被调用。
__delattr__(self,name):如果要删除 name,这个方法就被调用。
> class A(object):
...   def __getattr__(self, name):
...     print "You use getattr"
...   def __setattr__(self, name, value):
...     print "You use setattr"
...     self.__dict__[name] = value
# a.x,按照本节开头的例子,是要报错的。但是,由于在这里使用了__getattr__(self, name) 方法,当发现 x 不存在于对象的__dict__中的时候,就调用了__getattr__,即所谓“拦截成员”。
> a = A()
> a.x
You use getattr

# 给对象的属性赋值时候,调用了__setattr__(self, name, value)方法,这个方法中有一句 self.__dict__[name] = value,通过这个语句,就将属性和数据保存到了对象的__dict__中
> a.x = 7
You use setattr

# 测试__getattribute__(self,name)
> class B(object):
...   def __getattribute__(self, name):
...     print "you are useing getattribute"
...     return object.__getattribute__(self, name)
# 返回的内容用的是 return object.__getattribute__(self, name),而没有使用 return self.__dict__[name]。因为如果用这样的方式,就是访问 self.__dict__,只要访问这个属性,就要调用`getattribute``,这样就导致了无限递归

# 访问不存在的成员,可以看到,已经被__getattribute__拦截了,虽然最后还是要报错的。
> b = B()
> b.y
you are useing getattribute
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 4, in __getattribute__
AttributeError: 'B' object has no attribute 'y'

Property函数

porperty可以作为装饰器使用把方法标记为特性

class Vector(object):
  def __init__(self, x, y):
    # 使用两个前导下划线,把属性标记为私有
    self.__x = float(x)
    self.__y = float(y)
  
  # porperty装饰器把读值方法标记为特性
  @property
  def x(self):
    return self.__x
    
  @property
  def y(self):
    return self.__y
    
vector = Vector(3,4)
print(vector.x, vector.y)

使用property可以将函数封装为属性

class Rectangle(object):
  """
  the width and length of Rectangle
  """
  def __init__(self):
    self.width = 0
    self.length = 0

  def setSize(self, size):
    self.width, self.length = size
  def getSize(self):
    return self.width, self.length

if __name__ == "__main__":
  r = Rectangle()
  r.width = 3
  r.length = 4
  print r.getSize()  # (3,4)
  r.setSize( (30, 40) )
  print r.width  # 30
  print r.length  # 40

这段代码可以正常运行,但是属性的调用方式可以改进,如下:

class Rectangle(object):
  """
  the width and length of Rectangle
  """
  def __init__(self):
    self.width = 0
    self.length = 0

  def setSize(self, size):
    self.width, self.length = size
  def getSize(self):
    return self.width, self.length
  # 使用property方法将函数封装为属性,更优雅
  size = property(getSize, setSize)

if __name__ == "__main__":
  r = Rectangle()
  r.width = 3
  r.length = 4
  print r.size   # (30, 40)
  r.size = 30, 40
  print r.width  # 30
  print r.length  # 40

使用魔术方法实现:

class NewRectangle(object):
  def __init__(self):
    self.width = 0
    self.length = 0
  
  def __setattr__(self, name, value):
    if name == 'size':
      self.width, self, length = value
    else:
      self.__dict__[name] = value
      
  def __getattr__(self, name):
    if name == 'size':
      return self.width, self.length
    else:
      raise AttrubuteErrir
      
if __name__ == "__main__":
  r = Rectangle()
  r.width = 3
  r.length = 4
  print r.size   # (30, 40)
  r.size = 30, 40
  print r.width  # 30
  print r.length  # 40

属性的获取顺序

最后我们来看看熟悉的获得顺序:通过实例获取其属性,如果在__dict__中有相应的属性,就直接返回其结果;如果没有,会到类属性中找。

看下面一个例子:

class A(object):
  author = "qiwsir"
  def __getattr__(self, name):
    if name != "author":
      return "from starter to master."

if __name__ == "__main__":
  a = A()
  print a.author # qiwsir
  print a.lang # from starter to master.

当 a = A() 后,并没有为实例建立任何属性,或者说实例的__dict__是空的。但是如果要查看 a.author,因为实例的属性中没有,所以就去类属性中找,发现果然有,于是返回其值 “qiwsir”。但是,在找 a.lang的时候,不仅实例属性中没有,类属性中也没有,于是就调用了__getattr__()方法。在上面的类中,有这个方法,如果没有__getattr__()方法呢?如果没有定义这个方法,就会引发 AttributeError,这在前面已经看到了。

以上这篇Python获取对象属性的几种方式小结就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Python,对象属性

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。