圆月山庄资源网 Design By www.vgjia.com

本文介绍了python 比较2张图片的相似度的方法示例,分享给大家,具体如下:

#!/usr/bin/python
# -*- coding: UTF-8 -*-
import cv2
import numpy as np
 
#均值哈希算法
def aHash(img):
  #缩放为8*8
  img=cv2.resize(img,(8,8),interpolation=cv2.INTER_CUBIC)
  #转换为灰度图
  gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  #s为像素和初值为0,hash_str为hash值初值为''
  s=0
  hash_str=''
  #遍历累加求像素和
  for i in range(8):
    for j in range(8):
      s=s+gray[i,j]
  #求平均灰度
  avg=s/64
  #灰度大于平均值为1相反为0生成图片的hash值
  for i in range(8):
    for j in range(8):
      if gray[i,j]>avg:
        hash_str=hash_str+'1'
      else:
        hash_str=hash_str+'0'
  return hash_str
 
#差值感知算法
def dHash(img):
  #缩放8*8
  img=cv2.resize(img,(9,8),interpolation=cv2.INTER_CUBIC)
  #转换灰度图
  gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  hash_str=''
  #每行前一个像素大于后一个像素为1,相反为0,生成哈希
  for i in range(8):
    for j in range(8):
      if  gray[i,j]>gray[i,j+1]:
        hash_str=hash_str+'1'
      else:
        hash_str=hash_str+'0'
  return hash_str
 
#Hash值对比
def cmpHash(hash1,hash2):
  n=0
  #hash长度不同则返回-1代表传参出错
  if len(hash1)!=len(hash2):
    return -1
  #遍历判断
  for i in range(len(hash1)):
    #不相等则n计数+1,n最终为相似度
    if hash1[i]!=hash2[i]:
      n=n+1
  return n
 
img1=cv2.imread('A.png')
img2=cv2.imread('B.png')
hash1= aHash(img1)
hash2= aHash(img2)
print(hash1)
print(hash2)
n=cmpHash(hash1,hash2)
print '均值哈希算法相似度:'+ str(n)
 
hash1= dHash(img1)
hash2= dHash(img2)
print(hash1)
print(hash2)
n=cmpHash(hash1,hash2)
print '差值哈希算法相似度:'+ str(n)

讲解

相似图像搜索的哈希算法有三种:

  • 均值哈希算法
  • 差值哈希算法
  • 感知哈希算法
  • 均值哈希算法

步骤

缩放:图片缩放为8*8,保留结构,出去细节。
灰度化:转换为256阶灰度图。
求平均值:计算灰度图所有像素的平均值。
比较:像素值大于平均值记作1,相反记作0,总共64位。
生成hash:将上述步骤生成的1和0按顺序组合起来既是图片的指纹(hash)。顺序不固定。但是比较时候必须是相同的顺序。
对比指纹:将两幅图的指纹对比,计算汉明距离,即两个64位的hash值有多少位是不一样的,不相同位数越少,图片越相似。

代码实现: 

#均值哈希算法
def aHash(img):
  #缩放为8*8
  img=cv2.resize(img,(8,8),interpolation=cv2.INTER_CUBIC)
  #转换为灰度图
  gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  #s为像素和初值为0,hash_str为hash值初值为''
  s=0
  hash_str=''
  #遍历累加求像素和
  for i in range(8):
    for j in range(8):
      s=s+gray[i,j]
  #求平均灰度
  avg=s/64
  #灰度大于平均值为1相反为0生成图片的hash值
  for i in range(8):
    for j in range(8):
      if gray[i,j]>avg:
        hash_str=hash_str+'1'
      else:
        hash_str=hash_str+'0'      
  return hash_str

差值哈希算法

差值哈希算法前期和后期基本相同,只有中间比较hash有变化。

步骤
1. 缩放:图片缩放为8*9,保留结构,出去细节。
2. 灰度化:转换为256阶灰度图。
3. 求平均值:计算灰度图所有像素的平均值。
4. 比较:像素值大于后一个像素值记作1,相反记作0。本行不与下一行对比,每行9个像素,八个差值,有8行,总共64位
5. 生成hash:将上述步骤生成的1和0按顺序组合起来既是图片的指纹(hash)。顺序不固定。但是比较时候必须是相同的顺序。
6. 对比指纹:将两幅图的指纹对比,计算汉明距离,即两个64位的hash值有多少位是不一样的,不相同位数越少,图片越相似。

#差值感知算法
def dHash(img):
  #缩放8*8
  img=cv2.resize(img,(9,8),interpolation=cv2.INTER_CUBIC)
  #转换灰度图
  gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  hash_str=''
  #每行前一个像素大于后一个像素为1,相反为0,生成哈希
  for i in range(8):
    for j in range(8):
      if  gray[i,j]>gray[i,j+1]:
        hash_str=hash_str+'1'
      else:
        hash_str=hash_str+'0'
  return hash_str

感知哈希算法

感知哈希算法可以参考
相似性︱python+opencv实现pHash算法+hamming距离(simhash)(三)
讲的很详细了。

Hash值对比

由于返回值为str字符串,所以直接遍历字符串进行比对。

#Hash值对比
def cmpHash(hash1,hash2):
  n=0
  #hash长度不同则返回-1代表传参出错
  if len(hash1)!=len(hash2):
    return -1
  #遍历判断
  for i in range(len(hash1)):
    #不相等则n计数+1,n最终为相似度
    if hash1[i]!=hash2[i]:
      n=n+1
  return n

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
python识别相似图片,python图片对比

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。