圆月山庄资源网 Design By www.vgjia.com

数据丢失(缺失)在现实生活中总是一个问题。 机器学习和数据挖掘等领域由于数据缺失导致的数据质量差,在模型预测的准确性上面临着严重的问题。 在这些领域,缺失值处理是使模型更加准确和有效的重点。

使用重构索引(reindexing),创建了一个缺少值的DataFrame。 在输出中,NaN表示不是数字的值。

一、检查缺失值

为了更容易地检测缺失值(以及跨越不同的数组dtype),Pandas提供了isnull()和notnull()函数,它们也是Series和DataFrame对象的方法

示例1

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3),
         index=['a', 'c', 'e', 'f','h'],
         columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print(df)
print('\n')

print (df['one'].isnull())

输出结果:

        one       two     three
a  0.036297 -0.615260 -1.341327
b       NaN       NaN       NaN
c -1.908168 -0.779304  0.212467
d       NaN       NaN       NaN
e  0.527409 -2.432343  0.190436
f  1.428975 -0.364970  1.084148
g       NaN       NaN       NaN
h  0.763328 -0.818729  0.240498


a    False
b     True
c    False
d     True
e    False
f    False
g     True
h    False
Name: one, dtype: bool

示例2

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print (df['one'].notnull())

输出结果:
a     True
b    False
c     True
d    False
e     True
f     True
g    False
h     True
Name: one, dtype: bool

二、缺少数据的计算

  • 在求和数据时,NA将被视为0
  • 如果数据全部是NA,那么结果将是NA

实例1

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print(df)
print('\n')

print (df['one'].sum())

输出结果:

        one       two     three
a -1.191036  0.945107 -0.806292
b       NaN       NaN       NaN
c  0.127794 -1.812588 -0.466076
d       NaN       NaN       NaN
e  2.358568  0.559081  1.486490
f -0.242589  0.574916 -0.831853
g       NaN       NaN       NaN
h -0.328030  1.815404 -1.706736


0.7247067964060545 

示例2

import pandas as pd

df = pd.DataFrame(index=[0,1,2,3,4,5],columns=['one','two'])

print(df)
print('\n')

print (df['one'].sum())

输出结果:

   one  two
0  NaN  NaN
1  NaN  NaN
2  NaN  NaN
3  NaN  NaN
4  NaN  NaN
5  NaN  NaN

0

三、填充缺少数据

Pandas提供了各种方法来清除缺失的值。fillna()函数可以通过几种方法用非空数据“填充”NA值。

用标量值替换NaN

以下程序显示如何用0替换NaN。

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(3, 3), index=['a', 'c', 'e'],columns=['one','two', 'three'])

df = df.reindex(['a', 'b', 'c'])

print (df)
print('\n')

print ("NaN replaced with '0':")
print (df.fillna(0))

输出结果:

        one       two     three
a -0.479425 -1.711840 -1.453384
b       NaN       NaN       NaN
c -0.733606 -0.813315  0.476788

NaN replaced with '0':
        one       two     three
a -0.479425 -1.711840 -1.453384
b  0.000000  0.000000  0.000000
c -0.733606 -0.813315  0.476788

在这里填充零值; 当然,也可以填写任何其他的值。

替换丢失(或)通用值

很多时候,必须用一些具体的值取代一个通用的值。可以通过应用替换方法来实现这一点。用标量值替换NA是fillna()函数的等效行为。

示例

import pandas as pd

df = pd.DataFrame({'one':[10,20,30,40,50,2000],'two':[1000,0,30,40,50,60]})

print(df)
print('\n')

print (df.replace({1000:10,2000:60}))

输出结果:

    one   two
0    10  1000
1    20     0
2    30    30
3    40    40
4    50    50
5  2000    60

   one  two
0   10   10
1   20    0
2   30   30
3   40   40
4   50   50
5   60   60

填写NA前进和后退

使用重构索引章节讨论的填充概念,来填补缺失的值。

方法 动作 pad/fill 填充方法向前 bfill/backfill 填充方法向后

示例1

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print(df)
print('\n')

print (df.fillna(method='pad'))

输出结果:

        one       two     three
a -0.023243  1.671621 -1.687063
b       NaN       NaN       NaN
c -0.933355  0.609602 -0.620189
d       NaN       NaN       NaN
e  0.151455 -1.324563 -0.598897
f  0.605670 -0.924828 -1.050643
g       NaN       NaN       NaN
h  0.892414 -0.137194 -1.101791


        one       two     three
a -0.023243  1.671621 -1.687063
b -0.023243  1.671621 -1.687063
c -0.933355  0.609602 -0.620189
d -0.933355  0.609602 -0.620189
e  0.151455 -1.324563 -0.598897
f  0.605670 -0.924828 -1.050643
g  0.605670 -0.924828 -1.050643
h  0.892414 -0.137194 -1.101791

示例2

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print (df.fillna(method='backfill'))

输出结果:

        one       two     three
a  2.278454  1.550483 -2.103731
b -0.779530  0.408493  1.247796
c -0.779530  0.408493  1.247796
d  0.262713 -1.073215  0.129808
e  0.262713 -1.073215  0.129808
f -0.600729  1.310515 -0.877586
g  0.395212  0.219146 -0.175024
h  0.395212  0.219146 -0.175024

四、丢失缺少的值

使用dropna函数和axis参数。 默认情况下,axis = 0,即在行上应用,这意味着如果行内的任何值是NA,那么整个行被排除。

实例1

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f','h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print (df.dropna())

输出结果 :

        one       two     three
a -0.719623  0.028103 -1.093178
c  0.040312  1.729596  0.451805
e -1.029418  1.920933  1.289485
f  1.217967  1.368064  0.527406
h  0.667855  0.147989 -1.035978

示例2

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print (df.dropna(axis=1))

输出结果:

Empty DataFrame
Columns: []
Index: [a, b, c, d, e, f, g, h]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
Pandas,缺失数据,Pandas,缺失,数据

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?