圆月山庄资源网 Design By www.vgjia.com

1.1 简介

深层神经网络一般都需要大量的训练数据才能获得比较理想的结果。在数据量有限的情况下,可以通过数据增强(Data Augmentation)来增加训练样本的多样性, 提高模型鲁棒性,避免过拟合。

在计算机视觉中,典型的数据增强方法有翻转(Flip),旋转(Rotat ),缩放(Scale),随机裁剪或补零(Random Crop or Pad),色彩抖动(Color jittering),加噪声(Noise)

笔者在跟进视频及图像中的人体姿态检测和关键点追踪(Human Pose Estimatiion and Tracking in videos)的项目。因此本文的数据增强仅使用——翻转(Flip),旋转(Rotate ),缩放以及缩放(Scale)

2.1 裁剪(Crop)

  • image.shape--([3, width, height])一个视频序列中的一帧图片,裁剪前大小不统一
  • bbox.shape--([4,])人体检测框,用于裁剪
  • x.shape--([1,13]) 人体13个关键点的所有x坐标值
  • y.shape--([1,13])人体13个关键点的所有y坐标值
def crop(image, bbox, x, y, length):
    x, y, bbox = x.astype(np.int), y.astype(np.int), bbox.astype(np.int)

    x_min, y_min, x_max, y_max = bbox
    w, h = x_max - x_min, y_max - y_min

    # Crop image to bbox
    image = image[y_min:y_min + h, x_min:x_min + w, :]

    # Crop joints and bbox
    x -= x_min
    y -= y_min
    bbox = np.array([0, 0, x_max - x_min, y_max - y_min])

    # Scale to desired size
    side_length = max(w, h)
    f_xy = float(length) / float(side_length)
    image, bbox, x, y = Transformer.scale(image, bbox, x, y, f_xy)

    # Pad
    new_w, new_h = image.shape[1], image.shape[0]
    cropped = np.zeros((length, length, image.shape[2]))

    dx = length - new_w
    dy = length - new_h
    x_min, y_min = int(dx / 2.), int(dy / 2.)
    x_max, y_max = x_min + new_w, y_min + new_h

    cropped[y_min:y_max, x_min:x_max, :] = image
    x += x_min
    y += y_min

    x = np.clip(x, x_min, x_max)
    y = np.clip(y, y_min, y_max)

    bbox += np.array([x_min, y_min, x_min, y_min])
    return cropped, bbox, x.astype(np.int), y.astype(np.int)

2.2 缩放(Scale)

  • image.shape--([3, 256, 256])一个视频序列中的一帧图片,裁剪后输入网络为256*256
  • bbox.shape--([4,])人体检测框,用于裁剪
  • x.shape--([1,13]) 人体13个关键点的所有x坐标值
  • y.shape--([1,13])人体13个关键点的所有y坐标值
  • f_xy--缩放倍数
def scale(image, bbox, x, y, f_xy):
    (h, w, _) = image.shape
    h, w = int(h * f_xy), int(w * f_xy)
    image = resize(image, (h, w), preserve_range=True, anti_aliasing=True, mode='constant').astype(np.uint8)

    x = x * f_xy
    y = y * f_xy
    bbox = bbox * f_xy

    x = np.clip(x, 0, w)
    y = np.clip(y, 0, h)

    return image, bbox, x, y

2.3 翻转(fillip)

这里是将图片围绕对称轴进行左右翻转(因为人体是左右对称的,在关键点检测中有助于防止模型过拟合)

def flip(image, bbox, x, y):
    image = np.fliplr(image).copy()
    w = image.shape[1]
    x_min, y_min, x_max, y_max = bbox
    bbox = np.array([w - x_max, y_min, w - x_min, y_max])
    x = w - x
    x, y = Transformer.swap_joints(x, y)
    return image, bbox, x, y

翻转前:

基于Python的图像数据增强Data Augmentation解析

翻转后:

基于Python的图像数据增强Data Augmentation解析

2.4 旋转(rotate)

angle--旋转角度

def rotate(image, bbox, x, y, angle):
    # image - -(256, 256, 3)
    # bbox - -(4,)
    # x - -[126 129 124 117 107 99 128 107 108 105 137 155 122 99]
    # y - -[209 176 136 123 178 225 65 47 46 24 44 64 49 54]
    # angle - --8.165648811999333
    # center of image [128,128]
    o_x, o_y = (np.array(image.shape[:2][::-1]) - 1) / 2.
    width,height = image.shape[0],image.shape[1]
    x1 = x
    y1 = height - y
    o_x = o_x
    o_y = height - o_y
    image = rotate(image, angle, preserve_range=True).astype(np.uint8)
    r_x, r_y = o_x, o_y
    angle_rad = (np.pi * angle) /180.0
    x = r_x + np.cos(angle_rad) * (x1 - o_x) - np.sin(angle_rad) * (y1 - o_y)
    y = r_y + np.sin(angle_rad) * (x1 - o_x) + np.cos(angle_rad) * (y1 - o_y)
    x = x
    y = height - y
    bbox[0] = r_x + np.cos(angle_rad) * (bbox[0] - o_x) + np.sin(angle_rad) * (bbox[1] - o_y)
    bbox[1] = r_y + -np.sin(angle_rad) * (bbox[0] - o_x) + np.cos(angle_rad) * (bbox[1] - o_y)
    bbox[2] = r_x + np.cos(angle_rad) * (bbox[2] - o_x) + np.sin(angle_rad) * (bbox[3] - o_y)
    bbox[3] = r_y + -np.sin(angle_rad) * (bbox[2] - o_x) + np.cos(angle_rad) * (bbox[3] - o_y)
    return image, bbox, x.astype(np.int), y.astype(np.int)

旋转前:

基于Python的图像数据增强Data Augmentation解析

旋转后:

基于Python的图像数据增强Data Augmentation解析

3 结果(output)

数据增强前的原图:

基于Python的图像数据增强Data Augmentation解析

数据增强后:

基于Python的图像数据增强Data Augmentation解析

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
python,图像,数据增强,data,augmentation

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?