一、TensorFlow变量管理
1. TensorFLow还提供了tf.get_variable函数来创建或者获取变量,tf.variable用于创建变量时,其功能和tf.Variable基本是等价的。tf.get_variable中的初始化方法(initializer)的参数和tf.Variable的初始化过程也类似,initializer函数和tf.Variable的初始化方法是一一对应的,详见下表。
tf.get_variable和tf.Variable最大的区别就在于指定变量名称的参数。对于tf.Variable函数,变量名称是一个可选的参数,通过name=”v”的形式给出,对于tf.get_variable函数,变量名称是一个必填的参数,tf.get_variable会根据这个名称去创建或者获取变量。
2. 通过tf.variable_scope函数可以控制tf.get_variable函数的语义。当tf.variable_scope函数的参数reuse=True生成上下文管理器时,该上下文管理器内的所有的tf.get_variable函数会直接获取已经创建的变量,如果变量不存在则报错;当tf.variable_scope函数的参数reuse=False或者None时创建的上下文管理器中,tf.get_variable函数则直接创建新的变量,若同名的变量已经存在则报错。
3. 另tf.variable_scope函数是可以嵌套使用的。嵌套的时候,若某层上下文管理器未声明reuse参数,则该层上下文管理器的reuse参数与其外层保持一致。
4.tf.variable_scope函数提供了一个管理变量命名空间的方式。在tf.variable_scope中创建的变量,名称.name中名称前面会加入命名空间的名称,并通过“/”来分隔命名空间的名称和变量的名称。tf.get_variable("foou/baru/u", [1]),可以通过带命名空间名称的变量名来获取其命名空间下的变量。
二、TensorFlow编程演示
import tensorflow as tf # 在名字为foo的命名空间内创建名字为v的变量 with tf.variable_scope("foo"): v = tf.get_variable("v", [1], initializer=tf.constant_initializer(1.0)) ''''' # 因为命名空间foo内已经存在变量v,再次创建则报错 with tf.variable_scope("foo"): v = tf.get_variable("v", [1]) # ValueError: Variable foo/v already exists, disallowed. # Did you mean to set reuse=True in VarScope"foo", reuse=True): v1 = tf.get_variable("v", [1]) print(v == v1) # True ''''' # 当reuse=True时,tf.get_variable只能获取指定命名空间内的已创建的变量 with tf.variable_scope("bar", reuse=True): v2 = tf.get_variable("v", [1]) # ValueError: Variable bar/v does not exist, or was not created with # tf.get_variable(). Did you mean to set reuse=None in VarScope"root"): # 通过tf.get_variable_scope().reuse函数获取当前上下文管理器内的reuse参数取值 print(tf.get_variable_scope().reuse) # False with tf.variable_scope("foo1", reuse=True): print(tf.get_variable_scope().reuse) # True with tf.variable_scope("bar1"): # 嵌套在上下文管理器foo1内的bar1内未指定reuse参数,则保持与外层一致 print(tf.get_variable_scope().reuse) # True print(tf.get_variable_scope().reuse) # False # tf.variable_scope函数提供了一个管理变量命名空间的方式 u1 = tf.get_variable("u", [1]) print(u1.name) # u:0 with tf.variable_scope("foou"): u2 = tf.get_variable("u", [1]) print(u2.name) # foou/u:0 with tf.variable_scope("foou"): with tf.variable_scope("baru"): u3 = tf.get_variable("u", [1]) print(u3.name) # foou/baru/u:0 u4 = tf.get_variable("u1", [1]) print(u4.name) # foou/u1:0 # 可直接通过带命名空间名称的变量名来获取其命名空间下的变量 with tf.variable_scope("", reuse=True): u5 = tf.get_variable("foou/baru/u", [1]) print(u5.name) # foou/baru/u:0 print(u5 == u3) # True u6 = tf.get_variable("foou/u1", [1]) print(u6.name) # foou/u1:0 print(u6 == u4) # True
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
TensorFlow,变量
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]