在开发高并发系统时,有三把利器用来保护系统:缓存、降级和限流。那么何为限流呢?顾名思义,限流就是限制流量,就像你宽带包了1个G的流量,用完了就没了。
简单的并发控制
利用 channel 的缓冲设定,我们就可以来实现并发的限制。我们只要在执行并发的同时,往一个带有缓冲的 channel 里写入点东西(随便写啥,内容不重要)。让并发的 goroutine在执行完成后把这个 channel 里的东西给读走。这样整个并发的数量就讲控制在这个 channel的缓冲区大小上。
比如我们可以用一个 bool 类型的带缓冲 channel 作为并发限制的计数器。
chLimit := make(chan bool, 1)
然后在并发执行的地方,每创建一个新的 goroutine,都往 chLimit 里塞个东西。
for i, sleeptime := range input { chs[i] = make(chan string, 1) chLimit <- true go limitFunc(chLimit, chs[i], i, sleeptime, timeout) }
这里通过 go 关键字并发执行的是新构造的函数。他在执行完后,会把 chLimit的缓冲区里给消费掉一个。
limitFunc := func(chLimit chan bool, ch chan string, task_id, sleeptime, timeout int) { Run(task_id, sleeptime, timeout, ch) <-chLimit }
这样一来,当创建的 goroutine 数量到达 chLimit 的缓冲区上限后。主 goroutine 就挂起阻塞了,直到这些 goroutine 执行完毕,消费掉了 chLimit 缓冲区中的数据,程序才会继续创建新的 goroutine 。我们并发数量限制的目的也就达到了。
例子
package main import ( "fmt" "time" ) func Run(task_id, sleeptime, timeout int, ch chan string) { ch_run := make(chan string) go run(task_id, sleeptime, ch_run) select { case re := <-ch_run: ch <- re case <-time.After(time.Duration(timeout) * time.Second): re := fmt.Sprintf("task id %d , timeout", task_id) ch <- re } } func run(task_id, sleeptime int, ch chan string) { time.Sleep(time.Duration(sleeptime) * time.Second) ch <- fmt.Sprintf("task id %d , sleep %d second", task_id, sleeptime) return } func main() { input := []int{3, 2, 1} timeout := 2 chLimit := make(chan bool, 1) chs := make([]chan string, len(input)) limitFunc := func(chLimit chan bool, ch chan string, task_id, sleeptime, timeout int) { Run(task_id, sleeptime, timeout, ch) <-chLimit } startTime := time.Now() fmt.Println("Multirun start") for i, sleeptime := range input { chs[i] = make(chan string, 1) chLimit <- true go limitFunc(chLimit, chs[i], i, sleeptime, timeout) } for _, ch := range chs { fmt.Println(<-ch) } endTime := time.Now() fmt.Printf("Multissh finished. Process time %s. Number of task is %d", endTime.Sub(startTime), len(input)) }
运行结果:
Multirun start
task id 0 , timeout
task id 1 , timeout
task id 2 , sleep 1 second
Multissh finished. Process time 5s. Number of task is 3
如果修改并发限制为2:
chLimit := make(chan bool, 2)
运行结果:
Multirun start
task id 0 , timeout
task id 1 , timeout
task id 2 , sleep 1 second
Multissh finished. Process time 3s. Number of task is 3
使用计数器实现请求限流
限流的要求是在指定的时间间隔内,server 最多只能服务指定数量的请求。实现的原理是我们启动一个计数器,每次服务请求会把计数器加一,同时到达指定的时间间隔后会把计数器清零;这个计数器的实现代码如下所示:
type RequestLimitService struct { Interval time.Duration MaxCount int Lock sync.Mutex ReqCount int } func NewRequestLimitService(interval time.Duration, maxCnt int) *RequestLimitService { reqLimit := &RequestLimitService{ Interval: interval, MaxCount: maxCnt, } go func() { ticker := time.NewTicker(interval) for { <-ticker.C reqLimit.Lock.Lock() fmt.Println("Reset Count...") reqLimit.ReqCount = 0 reqLimit.Lock.Unlock() } }() return reqLimit } func (reqLimit *RequestLimitService) Increase() { reqLimit.Lock.Lock() defer reqLimit.Lock.Unlock() reqLimit.ReqCount += 1 } func (reqLimit *RequestLimitService) IsAvailable() bool { reqLimit.Lock.Lock() defer reqLimit.Lock.Unlock() return reqLimit.ReqCount < reqLimit.MaxCount }
在服务请求的时候, 我们会对当前计数器和阈值进行比较,只有未超过阈值时才进行服务:
var RequestLimit = NewRequestLimitService(10 * time.Second, 5) func helloHandler(w http.ResponseWriter, r *http.Request) { if RequestLimit.IsAvailable() { RequestLimit.Increase() fmt.Println(RequestLimit.ReqCount) io.WriteString(w, "Hello world!\n") } else { fmt.Println("Reach request limiting!") io.WriteString(w, "Reach request limit!\n") } } func main() { fmt.Println("Server Started!") http.HandleFunc("/", helloHandler) http.ListenAndServe(":8000", nil) }
完整代码 url
使用golang官方包实现httpserver频率限制
使用golang来编写httpserver时,可以使用官方已经有实现好的包:
import( "fmt" "net" "golang.org/x/net/netutil" ) func main() { l, err := net.Listen("tcp", "127.0.0.1:0") if err != nil { fmt.Fatalf("Listen: %v", err) } defer l.Close() l = LimitListener(l, max) http.Serve(l, http.HandlerFunc()) //bla bla bla................. }
源码[url] ( https://github.com/golang/net/blob/master/netutil/listen.go ),基本思路就是为连接数计数,通过make chan来建立一个最大连接数的channel, 每次accept就+1,close时候就-1. 当到达最大连接数时,就等待空闲连接出来之后再accept。
// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package netutil provides network utility functions, complementing the more // common ones in the net package. package netutil // import "golang.org/x/net/netutil" import ( "net" "sync" ) // LimitListener returns a Listener that accepts at most n simultaneous // connections from the provided Listener. func LimitListener(l net.Listener, n int) net.Listener { return &limitListener{ Listener: l, sem: make(chan struct{}, n), done: make(chan struct{}), } } type limitListener struct { net.Listener sem chan struct{} closeOnce sync.Once // ensures the done chan is only closed once done chan struct{} // no values sent; closed when Close is called } // acquire acquires the limiting semaphore. Returns true if successfully // accquired, false if the listener is closed and the semaphore is not // acquired. func (l *limitListener) acquire() bool { select { case <-l.done: return false case l.sem <- struct{}{}: return true } } func (l *limitListener) release() { <-l.sem } func (l *limitListener) Accept() (net.Conn, error) { //如果sem满了,就会阻塞在这 acquired := l.acquire() // If the semaphore isn't acquired because the listener was closed, expect // that this call to accept won't block, but immediately return an error. c, err := l.Listener.Accept() if err != nil { if acquired { l.release() } return nil, err } return &limitListenerConn{Conn: c, release: l.release}, nil } func (l *limitListener) Close() error { err := l.Listener.Close() l.closeOnce.Do(func() { close(l.done) }) return err } type limitListenerConn struct { net.Conn releaseOnce sync.Once release func() } func (l *limitListenerConn) Close() error { err := l.Conn.Close() //close时释放占用的sem l.releaseOnce.Do(l.release) return err }
使用Token Bucket(令牌桶算法)实现请求限流
在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流!为了保证在业务高峰期,线上系统也能保证一定的弹性和稳定性,最有效的方案就是进行服务降级了,而限流就是降级系统最常采用的方案之一。
这里为大家推荐一个开源库 https://github.com/didip/tollbooth ,但是,如果您想要一些简单的、轻量级的或者只是想要学习的东西,实现自己的中间件来处理速率限制并不困难。今天我们就来聊聊如何实现自己的一个限流中间件
首先我们需要安装一个提供了 Token bucket (令牌桶算法)的依赖包,上面提到的toolbooth 的实现也是基于它实现的:
$ go get golang.org/x/time/rate
Demo代码的实现
package main import ( "net/http" "golang.org/x/time/rate" ) var limiter = rate.NewLimiter(2, 5) func limit(next http.Handler) http.Handler { return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) { if limiter.Allow() == false { http.Error(w, http.StatusText(429), http.StatusTooManyRequests) return } next.ServeHTTP(w, r) }) } func main() { mux := http.NewServeMux() mux.HandleFunc("/", okHandler) // Wrap the servemux with the limit middleware. http.ListenAndServe(":4000", limit(mux)) } func okHandler(w http.ResponseWriter, r *http.Request) { w.Write([]byte("OK")) }
算法描述:用户配置的平均发送速率为r,则每隔1/r秒一个令牌被加入到桶中(每秒会有r个令牌放入桶中),桶中最多可以存放b个令牌。如果令牌到达时令牌桶已经满了,那么这个令牌会被丢弃;
实现
// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package rate provides a rate limiter. package rate import ( "fmt" "math" "sync" "time" "golang.org/x/net/context" ) // Limit defines the maximum frequency of some events. // Limit is represented as number of events per second. // A zero Limit allows no events. type Limit float64 // Inf is the infinite rate limit; it allows all events (even if burst is zero). const Inf = Limit(math.MaxFloat64) // Every converts a minimum time interval between events to a Limit. func Every(interval time.Duration) Limit { if interval <= 0 { return Inf } return 1 / Limit(interval.Seconds()) } // A Limiter controls how frequently events are allowed to happen. // It implements a "token bucket" of size b, initially full and refilled // at rate r tokens per second. // Informally, in any large enough time interval, the Limiter limits the // rate to r tokens per second, with a maximum burst size of b events. // As a special case, if r == Inf (the infinite rate), b is ignored. // See https://en.wikipedia.org/wiki/Token_bucket for more about token buckets. // // The zero value is a valid Limiter, but it will reject all events. // Use NewLimiter to create non-zero Limiters. // // Limiter has three main methods, Allow, Reserve, and Wait. // Most callers should use Wait. // // Each of the three methods consumes a single token. // They differ in their behavior when no token is available. // If no token is available, Allow returns false. // If no token is available, Reserve returns a reservation for a future token // and the amount of time the caller must wait before using it. // If no token is available, Wait blocks until one can be obtained // or its associated context.Context is canceled. // // The methods AllowN, ReserveN, and WaitN consume n tokens. type Limiter struct { //maximum token, token num per second limit Limit //burst field, max token num burst int mu sync.Mutex //tokens num, change tokens float64 // last is the last time the limiter's tokens field was updated last time.Time // lastEvent is the latest time of a rate-limited event (past or future) lastEvent time.Time } // Limit returns the maximum overall event rate. func (lim *Limiter) Limit() Limit { lim.mu.Lock() defer lim.mu.Unlock() return lim.limit } // Burst returns the maximum burst size. Burst is the maximum number of tokens // that can be consumed in a single call to Allow, Reserve, or Wait, so higher // Burst values allow more events to happen at once. // A zero Burst allows no events, unless limit == Inf. func (lim *Limiter) Burst() int { return lim.burst } // NewLimiter returns a new Limiter that allows events up to rate r and permits // bursts of at most b tokens. func NewLimiter(r Limit, b int) *Limiter { return &Limiter{ limit: r, burst: b, } } // Allow is shorthand for AllowN(time.Now(), 1). func (lim *Limiter) Allow() bool { return lim.AllowN(time.Now(), 1) } // AllowN reports whether n events may happen at time now. // Use this method if you intend to drop / skip events that exceed the rate limit. // Otherwise use Reserve or Wait. func (lim *Limiter) AllowN(now time.Time, n int) bool { return lim.reserveN(now, n, 0).ok } // A Reservation holds information about events that are permitted by a Limiter to happen after a delay. // A Reservation may be canceled, which may enable the Limiter to permit additional events. type Reservation struct { ok bool lim *Limiter tokens int //This is the time to action timeToAct time.Time // This is the Limit at reservation time, it can change later. limit Limit } // OK returns whether the limiter can provide the requested number of tokens // within the maximum wait time. If OK is false, Delay returns InfDuration, and // Cancel does nothing. func (r *Reservation) OK() bool { return r.ok } // Delay is shorthand for DelayFrom(time.Now()). func (r *Reservation) Delay() time.Duration { return r.DelayFrom(time.Now()) } // InfDuration is the duration returned by Delay when a Reservation is not OK. const InfDuration = time.Duration(1<<63 - 1) // DelayFrom returns the duration for which the reservation holder must wait // before taking the reserved action. Zero duration means act immediately. // InfDuration means the limiter cannot grant the tokens requested in this // Reservation within the maximum wait time. func (r *Reservation) DelayFrom(now time.Time) time.Duration { if !r.ok { return InfDuration } delay := r.timeToAct.Sub(now) if delay < 0 { return 0 } return delay } // Cancel is shorthand for CancelAt(time.Now()). func (r *Reservation) Cancel() { r.CancelAt(time.Now()) return } // CancelAt indicates that the reservation holder will not perform the reserved action // and reverses the effects of this Reservation on the rate limit as much as possible, // considering that other reservations may have already been made. func (r *Reservation) CancelAt(now time.Time) { if !r.ok { return } r.lim.mu.Lock() defer r.lim.mu.Unlock() if r.lim.limit == Inf || r.tokens == 0 || r.timeToAct.Before(now) { return } // calculate tokens to restore // The duration between lim.lastEvent and r.timeToAct tells us how many tokens were reserved // after r was obtained. These tokens should not be restored. restoreTokens := float64(r.tokens) - r.limit.tokensFromDuration(r.lim.lastEvent.Sub(r.timeToAct)) if restoreTokens <= 0 { return } // advance time to now now, _, tokens := r.lim.advance(now) // calculate new number of tokens tokens += restoreTokens if burst := float64(r.lim.burst); tokens > burst { tokens = burst } // update state r.lim.last = now r.lim.tokens = tokens if r.timeToAct == r.lim.lastEvent { prevEvent := r.timeToAct.Add(r.limit.durationFromTokens(float64(-r.tokens))) if !prevEvent.Before(now) { r.lim.lastEvent = prevEvent } } return } // Reserve is shorthand for ReserveN(time.Now(), 1). func (lim *Limiter) Reserve() *Reservation { return lim.ReserveN(time.Now(), 1) } // ReserveN returns a Reservation that indicates how long the caller must wait before n events happen. // The Limiter takes this Reservation into account when allowing future events. // ReserveN returns false if n exceeds the Limiter's burst size. // Usage example: // r, ok := lim.ReserveN(time.Now(), 1) // if !ok { // // Not allowed to act! Did you remember to set lim.burst to be > 0 "rate: Wait(n=%d) exceeds limiter's burst %d", n, lim.burst) } // Check if ctx is already cancelled select { case <-ctx.Done(): return ctx.Err() default: } // Determine wait limit now := time.Now() waitLimit := InfDuration if deadline, ok := ctx.Deadline(); ok { waitLimit = deadline.Sub(now) } // Reserve r := lim.reserveN(now, n, waitLimit) if !r.ok { return fmt.Errorf("rate: Wait(n=%d) would exceed context deadline", n) } // Wait t := time.NewTimer(r.DelayFrom(now)) defer t.Stop() select { case <-t.C: // We can proceed. return nil case <-ctx.Done(): // Context was canceled before we could proceed. Cancel the // reservation, which may permit other events to proceed sooner. r.Cancel() return ctx.Err() } } // SetLimit is shorthand for SetLimitAt(time.Now(), newLimit). func (lim *Limiter) SetLimit(newLimit Limit) { lim.SetLimitAt(time.Now(), newLimit) } // SetLimitAt sets a new Limit for the limiter. The new Limit, and Burst, may be violated // or underutilized by those which reserved (using Reserve or Wait) but did not yet act // before SetLimitAt was called. func (lim *Limiter) SetLimitAt(now time.Time, newLimit Limit) { lim.mu.Lock() defer lim.mu.Unlock() now, _, tokens := lim.advance(now) lim.last = now lim.tokens = tokens lim.limit = newLimit } // reserveN is a helper method for AllowN, ReserveN, and WaitN. // maxFutureReserve specifies the maximum reservation wait duration allowed. // reserveN returns Reservation, not *Reservation, to avoid allocation in AllowN and WaitN. func (lim *Limiter) reserveN(now time.Time, n int, maxFutureReserve time.Duration) Reservation { lim.mu.Lock() defer lim.mu.Unlock() if lim.limit == Inf { return Reservation{ ok: true, lim: lim, tokens: n, timeToAct: now, } } now, last, tokens := lim.advance(now) // Calculate the remaining number of tokens resulting from the request. tokens -= float64(n) // Calculate the wait duration var waitDuration time.Duration if tokens < 0 { waitDuration = lim.limit.durationFromTokens(-tokens) } // Decide result ok := n <= lim.burst && waitDuration <= maxFutureReserve // Prepare reservation r := Reservation{ ok: ok, lim: lim, limit: lim.limit, } if ok { r.tokens = n r.timeToAct = now.Add(waitDuration) } // Update state if ok { lim.last = now lim.tokens = tokens lim.lastEvent = r.timeToAct } else { lim.last = last } return r } // advance calculates and returns an updated state for lim resulting from the passage of time. // lim is not changed. func (lim *Limiter) advance(now time.Time) (newNow time.Time, newLast time.Time, newTokens float64) { last := lim.last if now.Before(last) { last = now } // Avoid making delta overflow below when last is very old. maxElapsed := lim.limit.durationFromTokens(float64(lim.burst) - lim.tokens) elapsed := now.Sub(last) if elapsed > maxElapsed { elapsed = maxElapsed } // Calculate the new number of tokens, due to time that passed. delta := lim.limit.tokensFromDuration(elapsed) tokens := lim.tokens + delta if burst := float64(lim.burst); tokens > burst { tokens = burst } return now, last, tokens } // durationFromTokens is a unit conversion function from the number of tokens to the duration // of time it takes to accumulate them at a rate of limit tokens per second. func (limit Limit) durationFromTokens(tokens float64) time.Duration { seconds := tokens / float64(limit) return time.Nanosecond * time.Duration(1e9*seconds) } // tokensFromDuration is a unit conversion function from a time duration to the number of tokens // which could be accumulated during that duration at a rate of limit tokens per second. func (limit Limit) tokensFromDuration(d time.Duration) float64 { return d.Seconds() * float64(limit) }
虽然在某些情况下使用单个全局速率限制器非常有用,但另一种常见情况是基于IP地址或API密钥等标识符为每个用户实施速率限制器。我们将使用IP地址作为标识符。简单实现代码如下:
package main import ( "net/http" "sync" "time" "golang.org/x/time/rate" ) // Create a custom visitor struct which holds the rate limiter for each // visitor and the last time that the visitor was seen. type visitor struct { limiter *rate.Limiter lastSeen time.Time } // Change the the map to hold values of the type visitor. var visitors = make(map[string]*visitor) var mtx sync.Mutex // Run a background goroutine to remove old entries from the visitors map. func init() { go cleanupVisitors() } func addVisitor(ip string) *rate.Limiter { limiter := rate.NewLimiter(2, 5) mtx.Lock() // Include the current time when creating a new visitor. visitors[ip] = &visitor{limiter, time.Now()} mtx.Unlock() return limiter } func getVisitor(ip string) *rate.Limiter { mtx.Lock() v, exists := visitors[ip] if !exists { mtx.Unlock() return addVisitor(ip) } // Update the last seen time for the visitor. v.lastSeen = time.Now() mtx.Unlock() return v.limiter } // Every minute check the map for visitors that haven't been seen for // more than 3 minutes and delete the entries. func cleanupVisitors() { for { time.Sleep(time.Minute) mtx.Lock() for ip, v := range visitors { if time.Now().Sub(v.lastSeen) > 3*time.Minute { delete(visitors, ip) } } mtx.Unlock() } } func limit(next http.Handler) http.Handler { return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) { limiter := getVisitor(r.RemoteAddr) if limiter.Allow() == false { http.Error(w, http.StatusText(429), http.StatusTooManyRequests) return } next.ServeHTTP(w, r) }) }
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]